基于橋系數(shù)的分裂社區(qū)檢測算法研究
發(fā)布時間:2018-11-27 07:36
【摘要】:研究社區(qū)結構有助于揭示網(wǎng)絡結構和功能之間的關系,而社區(qū)檢測是社區(qū)結構研究的基礎和核心。該文定義了一種聚集度橋系數(shù),將其應用到社區(qū)檢測中,設計出一種分裂社區(qū)檢測方法,包括分裂和合并兩個算法。分裂算法使用橋系數(shù)識別社區(qū)間邊,通過迭代刪除社區(qū)間邊分解網(wǎng)絡,從而發(fā)現(xiàn)網(wǎng)絡中的社區(qū)結構;合并算法根據(jù)社區(qū)連接強度合并社區(qū),可以揭示社區(qū)結構中的分層嵌套的現(xiàn)象。在六個社會網(wǎng)絡數(shù)據(jù)集上的實驗表明,本文算法可以有效的將網(wǎng)絡分裂為有意義的社區(qū),并且準確性接近或超過經(jīng)典的社區(qū)檢測算法。
[Abstract]:The study of community structure is helpful to reveal the relationship between network structure and function, and community detection is the foundation and core of community structure research. In this paper, a clustering bridge coefficient is defined and applied to community detection, and a split community detection method is designed, which includes two algorithms: split and merge. The split algorithm uses the bridge coefficient to identify the inter-community edges and iteratively deletes the inter-community edge decomposition network so as to find the community structure in the network. The merging algorithm can reveal the phenomenon of stratification and nesting in the community structure according to the intensity of community connection. Experiments on six social network datasets show that the proposed algorithm can effectively split the network into meaningful communities, and the accuracy is close to or higher than the classical community detection algorithms.
【作者單位】: 山西大學計算機與信息技術學院;
【基金】:國家自然科學基金(61175067,61272095,61432011,61573231) 山西省科技基礎條件平臺計劃項目(2015091001-0102) 山西省回國留學人員科研項目(2013-014)
【分類號】:O157.5
本文編號:2359890
[Abstract]:The study of community structure is helpful to reveal the relationship between network structure and function, and community detection is the foundation and core of community structure research. In this paper, a clustering bridge coefficient is defined and applied to community detection, and a split community detection method is designed, which includes two algorithms: split and merge. The split algorithm uses the bridge coefficient to identify the inter-community edges and iteratively deletes the inter-community edge decomposition network so as to find the community structure in the network. The merging algorithm can reveal the phenomenon of stratification and nesting in the community structure according to the intensity of community connection. Experiments on six social network datasets show that the proposed algorithm can effectively split the network into meaningful communities, and the accuracy is close to or higher than the classical community detection algorithms.
【作者單位】: 山西大學計算機與信息技術學院;
【基金】:國家自然科學基金(61175067,61272095,61432011,61573231) 山西省科技基礎條件平臺計劃項目(2015091001-0102) 山西省回國留學人員科研項目(2013-014)
【分類號】:O157.5
【相似文獻】
相關期刊論文 前6條
1 龐明勇,盧章平;局部數(shù)據(jù)集與噪聲數(shù)據(jù)曲線的平滑過濾[J];礦山測量;2001年04期
2 吳國清;莫則堯;陳虹;;一種基于信息測度的科學數(shù)據(jù)集序列約減方法[J];計算物理;2009年06期
3 柳金甫;怎樣處理異常數(shù)據(jù)[J];中國統(tǒng)計;1995年07期
4 易昆南;袁中萸;;對模擬縱向數(shù)據(jù)集缺失值處理的幾種方法比較[J];湖南工業(yè)大學學報;2008年02期
5 朱梅紅;;一種加權的MCLP分類模型及其在不平衡數(shù)據(jù)集上的應用[J];統(tǒng)計與決策;2011年21期
6 崔玉泉,馬建華,李振波;對一類數(shù)據(jù)集識別問題的探究[J];山東大學學報(理學版);2004年05期
相關碩士學位論文 前2條
1 張健;剪枝和網(wǎng)格采樣相結合的非平衡數(shù)據(jù)集分類方法[D];安徽大學;2012年
2 姜君;CIECAM02的若干問題及解決辦法[D];遼寧科技大學;2015年
,本文編號:2359890
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2359890.html
最近更新
教材專著