一類梁方程正解的存在性和對(duì)參數(shù)的依賴性
發(fā)布時(shí)間:2018-11-21 18:27
【摘要】:應(yīng)用錐不動(dòng)點(diǎn)定理并結(jié)合Banach空間中的半序結(jié)構(gòu),研究了一類梁方程的可解性問(wèn)題.不僅得到了梁方程正解的存在性結(jié)果,并且討論了梁方程正解對(duì)參數(shù)的依賴性.注意到梁方程中含有正參數(shù)λ和L~p-可積函數(shù),獲得的結(jié)果是新的,并從本質(zhì)上推廣了已有文獻(xiàn)的結(jié)果.
[Abstract]:The solvability of a class of beam equations is studied by using the cone fixed point theorem and the semi-ordered structure in Banach spaces. Not only the existence of positive solution of beam equation is obtained, but also the dependence of positive solution of beam equation on parameters is discussed. The positive parameter 位 and LP- integrable function are found in the beam equation. The results obtained are new and generalize the results obtained in the literature.
【作者單位】: 北京信息科技大學(xué)理學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(9011623903) 北京市教委科技計(jì)劃項(xiàng)目(71E1710957)
【分類號(hào)】:O175.8
,
本文編號(hào):2347895
[Abstract]:The solvability of a class of beam equations is studied by using the cone fixed point theorem and the semi-ordered structure in Banach spaces. Not only the existence of positive solution of beam equation is obtained, but also the dependence of positive solution of beam equation on parameters is discussed. The positive parameter 位 and LP- integrable function are found in the beam equation. The results obtained are new and generalize the results obtained in the literature.
【作者單位】: 北京信息科技大學(xué)理學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(9011623903) 北京市教委科技計(jì)劃項(xiàng)目(71E1710957)
【分類號(hào)】:O175.8
,
本文編號(hào):2347895
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2347895.html
最近更新
教材專著