時(shí)間序列挖掘算法在生產(chǎn)安全事故中的應(yīng)用研究
[Abstract]:The annual economic loss caused by safety problems in China accounts for about 6% of the total amount of GDP, which brings great losses to the country and the people, so it is very important to predict the accidents of production safety. The traditional analysis of production safety accidents mainly includes statistical analysis, regression model, grey model and so on, which is unfavorable to take measures to prevent accidents. This paper combines the theory of monadic time series and the theory of multivariate time series in the research of production safety accident data. It has some innovation in the application of the theory, and applies the time series prediction model to the prediction of production safety. In particular, the vector moving average autoregressive method of binary time series of multivariate time series is applied to production safety accidents. Taking the data of nearly 10 years as an example, the trend and influencing factors of accidents are analyzed from many aspects. To provide guidance and suggestions, timely production safety accidents to take measures. This paper mainly carried out a few aspects of the work: 1. The data are obtained from the official website of the State Safety Supervision Bureau, and the production safety accidents and their brief information are obtained by regular expression. Through the data preprocessing to the big accident, the data characteristic is displayed through the visualization. 2. 2. The ARIMA model of monadic time series and the cubic exponential smoothing model are compared with the data fitting and forecasting results of 15 years of production safety larger accident series, and the number of deaths in accidents, the number of deaths and the development trend are compared in terms of the number of accidents, the number of deaths, and the trend of development. The residual error of the unary time series prediction model is -21. 92, relative error 0. 266a higher accuracy and reliability than cubic exponential smoothing. This paper studies the theoretical basis of multivariate time series and applies it to the prediction of production safety accidents. Compared with the previous models, the relative error is 0.2452, which is more accurate. The binary time series of death and accident are analyzed, and its growth rate is used as time series analysis model to predict the value of less than 12 months. This paper combines qualitative analysis with quantitative prediction to predict production safety accidents. Qualitative analysis: the accident is divided into different types through the large accident brief information, among which the traffic accident type is the most; For the year analysis of major accidents, the turning point is 2005, before 2005, the major accidents are on the rise, and after 2005, the trend is decreasing year by year. In view of the region of large accidents, it is found that the major accidents are mainly in the southwest mountainous area and the geological unstable area. Quantitative analysis: through establishing exponential smoothing, univariate time series, multivariate time series model, adjusting model parameters, selecting the best model to predict the larger accident sequence. Get the trend of production safety accidents in the coming year. The countermeasures to prevent and reduce accidents are put forward in time through the trend to provide support for national macro-decision-making.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X915.4;O211.61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李麗;劉新;康華;閆立達(dá);;基于2010年—2014年年度事故統(tǒng)計(jì)的我國(guó)安全生產(chǎn)形勢(shì)分析[J];長(zhǎng)春工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2015年02期
2 李生才;笑蕾;;2014年7—8月國(guó)內(nèi)生產(chǎn)安全事故統(tǒng)計(jì)分析[J];安全與環(huán)境學(xué)報(bào);2014年05期
3 支同祥;;新《安全生產(chǎn)法》要點(diǎn)解讀[J];勞動(dòng)保護(hù);2014年10期
4 李飛翱;羅文強(qiáng);劉小珊;黃麗;;多元非平穩(wěn)時(shí)間序列分析的滑坡變形預(yù)測(cè)研究[J];長(zhǎng)江科學(xué)院院報(bào);2014年04期
5 崔桂梅;李靜;張勇;盧俊慧;馬祥;;高爐鐵水溫度的多元時(shí)間序列建模和預(yù)測(cè)[J];鋼鐵研究學(xué)報(bào);2014年04期
6 張文勛;;基于灰色預(yù)測(cè)法和指數(shù)平滑法預(yù)測(cè)研究新疆安全生產(chǎn)事故[J];安全;2013年11期
7 李曉東;陳琦;;我國(guó)建筑生產(chǎn)安全事故的主要類型及其防范措施[J];土木工程學(xué)報(bào);2012年S2期
8 王琰;殷躍廣;;基于灰色系統(tǒng)理論的安全生產(chǎn)事故分析和預(yù)測(cè)[J];科技資訊;2012年06期
9 劉香蘭;董桂剛;朱紀(jì)明;;灰色關(guān)聯(lián)分析在煤礦傷亡事故統(tǒng)計(jì)分析中的應(yīng)用[J];煤炭工程;2012年02期
10 胡軍偉;秦奕青;張偉;;正則表達(dá)式在Web信息抽取中的應(yīng)用[J];北京信息科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
相關(guān)博士學(xué)位論文 前6條
1 閆明月;時(shí)間序列相似性與預(yù)測(cè)算法研究及其應(yīng)用[D];北京交通大學(xué);2014年
2 李德才;基于多元時(shí)間序列的關(guān)聯(lián)分析及預(yù)測(cè)方法研究[D];大連理工大學(xué);2012年
3 吳佳文;水文時(shí)間序列數(shù)據(jù)挖掘算法研究與應(yīng)用[D];沈陽農(nóng)業(yè)大學(xué);2011年
4 吳少智;時(shí)間序列數(shù)據(jù)挖掘在生物醫(yī)學(xué)中的應(yīng)用研究[D];電子科技大學(xué);2010年
5 管河山;金融多元時(shí)間序列挖掘方法研究與應(yīng)用[D];廈門大學(xué);2008年
6 杜奕;時(shí)間序列挖掘相關(guān)算法研究及應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 楊諭黔;多維時(shí)間序列學(xué)習(xí)建模與預(yù)測(cè)分析[D];北京交通大學(xué);2014年
2 鄭皓;基于多元時(shí)間序列的神經(jīng)網(wǎng)絡(luò)短期風(fēng)速預(yù)測(cè)模型的研究[D];太原理工大學(xué);2013年
3 陳娟;我國(guó)煤礦事故統(tǒng)計(jì)分析及基于最佳組合模型的預(yù)測(cè)研究[D];太原理工大學(xué);2012年
4 彭曉曉;建筑安全事故預(yù)測(cè)和預(yù)控對(duì)策研究[D];中國(guó)海洋大學(xué);2012年
5 代洪偉;時(shí)間序列分析在我國(guó)居民消費(fèi)價(jià)格指數(shù)中的應(yīng)用研究[D];合肥工業(yè)大學(xué);2012年
6 馮健鈞;政府構(gòu)建安全生產(chǎn)長(zhǎng)效機(jī)制研究[D];天津大學(xué);2010年
7 魏寧;時(shí)間序列分析方法研究及其在陜西省GDP預(yù)測(cè)中的應(yīng)用[D];西北農(nóng)林科技大學(xué);2010年
8 趙瑋英;時(shí)間序列分析在氣象中的應(yīng)用[D];揚(yáng)州大學(xué);2010年
9 李琦;時(shí)間序列VARFIMA模型研究與應(yīng)用[D];西安電子科技大學(xué);2010年
10 李蘇旺;時(shí)間序列數(shù)據(jù)建模及其在瓦斯預(yù)測(cè)中的應(yīng)用研究[D];太原理工大學(xué);2007年
,本文編號(hào):2329310
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2329310.html