基于SVM的初等數(shù)學(xué)問題自動(dòng)分類的研究與應(yīng)用
[Abstract]:As we all know, with the rapid development of computer information technology, information technology has been applied in every aspect of our life. In the field of education, people's eyes have gradually shifted from offline tutoring and manual marking of examination papers to intelligent Internet education based on artificial intelligence. One of the important prerequisites for the realization of this new concept of mathematical education is to transform the text into natural language. In popular terms, it is to convert mathematical statements understood by human beings into pre-defined computer storage knowledge. To allow the computer to handle the next step. These processing mainly have the solution, as well as the whole flow judgment paper and so on. This premise can also be called natural language processing process. Classification is the main problem in the process of natural language processing. This paper is mainly divided into two parts. The first part is the participle of elementary mathematical problem text, as well as part of speech tagging and named entity recognition. In the second part, the paper classifies the text of elementary mathematics problem based on SVM, and then transforms it into the representation of computer reasoning according to different categories. In English, there is a space between each word, but Chinese is different, all characters are connected together, so the Chinese text should be partitioned. However, mathematical expressions contain more symbols with specific meanings, so the general participle method is not feasible. Therefore, it is necessary to construct a special participle for mathematical expression. Similarly, the entities expressed in mathematical language are different from those expressed in common language. The entities of common language are more time, place, name and so on. In mathematical expressions, the entities that contain important information are often mathematical nouns, such as triangles, equations and so on. Therefore, it is necessary to define a specific named entity for the primary mathematical direction and then extract it. In this paper, conditional random fields are used to label named entities. There are many types involved in elementary mathematics problems. In order to solve elementary mathematical problems automatically, the first thing to do is to classify the problems and then call the corresponding solving methods according to different categories. The text preprocessing of primary mathematical problem text tagged by named entity model includes deactivating words and establishing word bag model. In this paper, chi-square statistics are used to select text feature vectors. In this way, the feature vector can reduce the computational cost and maintain the classification accuracy by selecting dimensionality reduction. Finally, according to the method proposed in this paper, the support vector machine (SVM) is used to implement a system for extracting named entities from elementary mathematical problems and classifying them. The system can accurately label named entities and provide knowledge representation for later problem solving and so on. At the same time, effective topic classification can be used as inference pruning for later problem solving or marking.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.1;O12
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 奚雪峰;周國(guó)棟;;面向自然語(yǔ)言處理的深度學(xué)習(xí)研究[J];自動(dòng)化學(xué)報(bào);2016年10期
2 何苑;郝夢(mèng)巖;;基于自然語(yǔ)言處理的計(jì)算機(jī)專業(yè)數(shù)學(xué)課程教學(xué)研究[J];長(zhǎng)治學(xué)院學(xué)報(bào);2016年02期
3 邱均平;方國(guó)平;;基于知識(shí)圖譜的中外自然語(yǔ)言處理研究的對(duì)比分析[J];現(xiàn)代圖書情報(bào)技術(shù);2014年12期
4 李海艦;田躍新;李文杰;;互聯(lián)網(wǎng)思維與傳統(tǒng)企業(yè)再造[J];中國(guó)工業(yè)經(jīng)濟(jì);2014年10期
5 王宇;邵洪雨;;基于主題詞提取的國(guó)內(nèi)自然語(yǔ)言處理研究現(xiàn)狀分析[J];情報(bào)科學(xué);2013年03期
6 唐釗;;條件隨機(jī)場(chǎng)模型在中文人名識(shí)別中的研究與實(shí)現(xiàn)[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2012年21期
7 楊皓東;江凌;李國(guó)俊;;國(guó)內(nèi)自然語(yǔ)言處理研究熱點(diǎn)分析——基于共詞分析[J];圖書情報(bào)工作;2011年10期
8 付年鈞;彭昌水;王慰;;中文分詞技術(shù)及其實(shí)現(xiàn)[J];軟件導(dǎo)刊;2011年01期
9 周穎;袁鶯;馬玉慧;任峗;;小學(xué)數(shù)學(xué)應(yīng)用題自動(dòng)解答特征分析及研究路線[J];中國(guó)電化教育;2010年08期
10 李國(guó)臣;王瑞波;李濟(jì)洪;;基于條件隨機(jī)場(chǎng)模型的漢語(yǔ)功能塊自動(dòng)標(biāo)注[J];計(jì)算機(jī)研究與發(fā)展;2010年02期
相關(guān)博士學(xué)位論文 前2條
1 計(jì)峰;自然語(yǔ)言處理中序列標(biāo)注模型的研究[D];復(fù)旦大學(xué);2012年
2 魯松;自然語(yǔ)言處理中詞相關(guān)性知識(shí)無(wú)導(dǎo)獲取和均衡分類器構(gòu)建[D];中國(guó)科學(xué)院研究生院(計(jì)算技術(shù)研究所);2001年
相關(guān)碩士學(xué)位論文 前8條
1 張磊磊;基于Hadoop和SVM算法的中文文本分類的研究與實(shí)現(xiàn)[D];昆明理工大學(xué);2015年
2 王綱;一種改進(jìn)隱條件隨機(jī)場(chǎng)模型的行為識(shí)別方法[D];西安電子科技大學(xué);2014年
3 王鵬;基于Lucene的中文分詞技術(shù)研究與實(shí)現(xiàn)[D];浙江工商大學(xué);2014年
4 張碩果;基于條件隨機(jī)場(chǎng)模型的文本分類研究[D];重慶大學(xué);2010年
5 毛玉才;基于語(yǔ)義網(wǎng)技術(shù)的語(yǔ)義檢索系統(tǒng)模型研究[D];黑龍江大學(xué);2008年
6 王秋;淺析自然語(yǔ)言理解及其應(yīng)用[D];陜西師范大學(xué);2008年
7 王宇寧;隱馬爾可夫模型在信息抽取中的應(yīng)用研究[D];大連理工大學(xué);2007年
8 趙俊霞;中學(xué)數(shù)學(xué)教師專業(yè)知識(shí)的發(fā)展[D];東北師范大學(xué);2006年
,本文編號(hào):2298820
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2298820.html