一類Ginzburg-Landau方程的動力學(xué)行為研究
[Abstract]:In this paper, the dynamic behavior of a class of Ginzburg-Landau equations is discussed. Firstly, the Ginzburg-Landau equation is solved by using the (G / G) expansion method, and then the existence of the pull back attractor of the generalized Ginzburg-Landau equation in the L ~ (2 (惟) space is discussed by means of the pullback condition C, and the pullback attractor of the nonlinear Ginzburg-Landau equation in the three-dimensional space is proved. Finally, the existence of the pull-back attractor for the Ginzburg-Landau equation with complex coefficients is discussed. The thesis includes four parts as follows: the first part introduces the development course of infinite dimensional dynamical system: the concept of Ginzburg-Landau equation and pull back attractor, the research background and present situation at home and abroad; the second part gives the basic concepts and theorems needed in this paper. In the third part, we discuss the existence of solutions for two-dimensional nonlinear Ginzburg-Landau equations with constant coefficients, and in the fourth part, we prove the existence of pull attractors for generalized Ginzburg-Landau equations. By the existence of the solution, the existence of the pullback absorption set is proved, and the existence of the pullback D- attractor in the L ~ (2 (惟) is proved by means of the pullback condition C, and then the pullback attractor of the nonlinear Ginzburg-Landau equation in three dimensional space is discussed. Finally, the existence of the pull attractor for the Ginzburg-Landau equation with complex coefficients is discussed by means of inequalities.
【學(xué)位授予單位】:延安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O175
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬騰洋;姜金平;雷思思;;非自治Cahn-Hilliard方程的拉回D-吸引子存在性[J];延安大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年04期
2 陳兆蕙;唐躍龍;;二維非線性復(fù)Ginzburg-Landau方程的一種解法[J];重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年06期
3 趙克發(fā);馬巧珍;;非自治反應(yīng)擴(kuò)散方程拉回吸引子的存在性[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
4 張曉明;姜金平;董超雨;;非線性梁方程的漸近吸引子[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2015年02期
5 張?jiān)?陳光淦;;帶Robin邊界條件的2維隨機(jī)Ginzburg-Landau方程的吸引子[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
6 韓英豪;馬松;王宏全;;一類非自治隨機(jī)波動方程拉回吸引子的存在性[J];遼寧師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
7 張?jiān)?;帶Neumann邊界條件的3維隨機(jī)Ginzburg-Landau方程的漸近行為[J];內(nèi)江師范學(xué)院學(xué)報(bào);2014年06期
8 徐茜;李曉軍;;帶非線性阻尼非自治波方程拉回吸引子的存在性[J];黑龍江大學(xué)自然科學(xué)學(xué)報(bào);2014年03期
9 鮑杰;舒級;;高階廣義2D Ginzburg-Landau方程的隨機(jī)吸引子[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
10 任麗;李曉軍;;非自治反應(yīng)擴(kuò)散方程的拉回D-吸引子[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
相關(guān)博士學(xué)位論文 前1條
1 汪永海;非自治無窮維動力系統(tǒng)的拉回吸引子存在性的研究[D];蘭州大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 齊淵;非自治動力系統(tǒng)一致拉回吸引子的存在性理論[D];蘭州大學(xué);2009年
,本文編號:2223380
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2223380.html