天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于奇異線性空間的子空間碼的構(gòu)造

發(fā)布時(shí)間:2018-05-26 20:11

  本文選題:有限域 + 奇異線性空間 ; 參考:《中國(guó)民航大學(xué)》2015年碩士論文


【摘要】:子空間碼是非相干網(wǎng)絡(luò)環(huán)境下網(wǎng)絡(luò)糾錯(cuò)編碼的一個(gè)重要研究?jī)?nèi)容,與傳統(tǒng)的編碼方法不同,子空間碼將信源消息表示成一個(gè)線性空間的子空間,并把這個(gè)子空間的一組基注入到通信網(wǎng)絡(luò)中進(jìn)行信息編碼、糾錯(cuò)、通信。由于子空間碼在網(wǎng)絡(luò)通信中具有的巨大潛力,子空間碼受到了人們廣泛的關(guān)注,并飛速發(fā)展。有限域上典型群的幾何空間具有良好的組合結(jié)構(gòu),且容易計(jì)數(shù),因此可以利用這些幾何空間構(gòu)造子空間碼,研究子空間碼的基本問(wèn)題,完備子空間碼等問(wèn)題。本文基于奇異線性空間的子空間構(gòu)造了子空間碼,計(jì)算了所構(gòu)造的子空間碼的球填充界,Singleton界,Wang-Xing-Safavi-Naini界,Johnson界和Gilbert-Varshamov界,并在此基礎(chǔ)之上得到了一類(lèi)達(dá)到Wang-Xing-Safavi-Naini界的最優(yōu)的子空間碼。首先,文章利用奇異線性空間中的(m,0)型子空間構(gòu)造了子空間碼,計(jì)算了所構(gòu)造的子空間碼的球填充界,Singleton界,Wang-Xing-Safavi-Naini界,Johnson界和Gilbert-Varshamov界,并且得到了一類(lèi)達(dá)到Wang-Xing-Safavi-Naini界的最優(yōu)的子空間碼((1,0),(,0),)qSm-δ+m n+l。其次,文章還利用奇異線性空間中的(m,1)型子空間構(gòu)造了子空間碼,計(jì)算了所構(gòu)造的子空間碼的球填充界,Singleton界,Wang-Xing-Safavi-Naini界,Johnson界和Gilbert-Varshamov界,并且得到了一類(lèi)達(dá)到Wang-Xing-Safavi-Naini界的最優(yōu)的子空間碼((1,0),(,1),)qSm-δ+m n+l。
[Abstract]:Subspace code is an important part of network error correction coding in non-coherent network environment. Different from the traditional coding method, subspace code represents the source message as a linear subspace. And the subspace of a set of bases into the communication network for information coding, error correction, communication. Because of the great potential of subspace codes in network communication, subspace codes have been widely concerned and developed rapidly. The geometric space of a typical group on a finite field has a good combination structure and is easy to count. So we can use these geometric spaces to construct subspace codes and to study the basic problems of subspace codes and complete subspace codes. In this paper, we construct subspace codes based on the subspaces of singular linear spaces, and calculate the sphere filling bounds of the constructed subspace codes. The Singleton bound, Wang-Xing-Safavi-Naini bound, the Johnson bound and the Gilbert-Varshamov bound, are calculated. On this basis, we obtain a class of optimal subspace codes that reach the Wang-Xing-Safavi-Naini bound. First of all, we construct subspace codes by using the subspaces of type 0) in singular linear spaces, and calculate the sphere filling bounds of the constructed subspace codes. The Gilbert-Varshamov and Johnson bounds of the constructed subspace codes are calculated, and a class of optimal subspace codes that reach the Wang-Xing-Safavi-Naini bound is obtained. Secondly, the subspace codes are constructed by using the subspaces of type 1) in singular linear spaces. The sphere filling bounds of the constructed subspace codes are calculated. The Singleton bound and the Wang-Xing-Safavi-Naini bound and the Gilbert-Varshamov bound of the constructed subspace codes are calculated. A class of optimal subspace codes with Wang-Xing-Safavi-Naini bound is obtained. The QSm- 未 m n l. is obtained.
【學(xué)位授予單位】:中國(guó)民航大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:O157.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 曹張華;唐元生;;安全網(wǎng)絡(luò)編碼綜述[J];計(jì)算機(jī)應(yīng)用;2010年02期



本文編號(hào):1938742

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1938742.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c268c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com