隨機(jī)種群模型的散逸性
本文選題:隨機(jī)種群模型 + 時(shí)變種群模型。 參考:《寧夏大學(xué)》2017年碩士論文
【摘要】:隨機(jī)微分方程在經(jīng)濟(jì)、生物、生態(tài)等領(lǐng)域有廣泛的應(yīng)用.在現(xiàn)實(shí)生活中,因?yàn)榇嬖谥鞣N隨機(jī)因素的影響,因此在隨機(jī)微分方程上加上擾動(dòng)就容易反映問(wèn)題.比如在現(xiàn)實(shí)生活中的種群模型,其中的一些參數(shù)死亡率,出生率都是通過(guò)科學(xué)的統(tǒng)計(jì)方法估計(jì)出來(lái)的,然而在統(tǒng)計(jì)中研究種群?jiǎn)栴}都是在給定的置信度下,通過(guò)數(shù)據(jù)計(jì)算得出置信區(qū)間,因此我們的種群密度也是在一個(gè)區(qū)間上的,所以種群的密度也是不確定的.因此,一般的隨機(jī)隨機(jī)微分方程很難描述清楚這一類問(wèn)題,為了清晰的說(shuō)明問(wèn)題,我們?cè)陔S機(jī)微分方程中加入了模糊,Markov跳以及環(huán)境噪聲等一些擾動(dòng)因素.但是當(dāng)種群模型中加入這些因素后,研究它們數(shù)值解很難,這里主要研究加入這些因素后,模型的散逸性.本文主要討論了在隨機(jī)微分方程背景下的與年齡相關(guān)的隨機(jī)種群系統(tǒng)的散逸性行為.主要內(nèi)容如下:(1)我們討論了與年齡相關(guān)的模糊隨機(jī)種群模型.在有界的條件(弱于線性增長(zhǎng)條件)和Lipschitz條件下,利用It(?)公式和Bellman-Gronwall-Type引理,建立了與年齡相關(guān)的模糊隨機(jī)種群擴(kuò)散系統(tǒng)均方散逸性的判定準(zhǔn)則,最后通過(guò)一些數(shù)值算例進(jìn)行驗(yàn)證.(2)我們討論了帶Markov跳時(shí)變隨機(jī)種群收獲系統(tǒng)的數(shù)值解問(wèn)題.利用Euler-Maruyama方法給出系統(tǒng)的解析解,在局部Lipschitz條件下,證明了方程的數(shù)值解在均方意義下收斂于其解析解.最后,通過(guò)數(shù)值例子對(duì)所給出的結(jié)論進(jìn)行了驗(yàn)證.(3)我們討論了一類在環(huán)境污染下與年齡相關(guān)的模糊隨機(jī)種群系統(tǒng),該模型考慮了環(huán)境污染、外界環(huán)境噪聲對(duì)種群的影響,而且設(shè)初值是一個(gè)模糊數(shù).在有界和Lipschitz條件下,運(yùn)用Ito公式和Gronwall引理,給出了環(huán)境污染下與年齡相關(guān)模糊隨機(jī)種群系統(tǒng)的均方散逸性.
[Abstract]:Stochastic differential equations are widely used in economy, biology and ecology. In real life, because of the influence of various random factors, it is easy to reflect the problem by adding perturbation to the stochastic differential equation. For example, in real life population models, some of these parameters, mortality and birth rate, are estimated by scientific statistical methods. However, in statistics, the study of population problems is based on a given degree of confidence. The confidence interval is calculated by the data, so our population density is also in an interval, so the population density is also uncertain. Therefore, it is difficult for a general stochastic differential equation to describe this kind of problem clearly. In order to explain the problem clearly, we add some disturbance factors such as fuzzy Markov jump and ambient noise to the stochastic differential equation. But when these factors are added into the population model, it is difficult to study their numerical solution. In this paper, we mainly discuss the escape behavior of Age-dependent stochastic population systems in the context of stochastic differential equations. The main contents are as follows: 1) We discuss a fuzzy stochastic population model related to age. Under the bounded condition (weaker than the linear growth condition) and the Lipschitz condition, we use the ITO condition. Based on the formula and Bellman-Gronwall-Type Lemma, a criterion for determining the mean square escape of a fuzzy stochastic population diffusion system is established. Finally, some numerical examples are given to verify the problem of numerical solution of the stochastic population harvesting system with Markov hopping. The analytical solution of the system is obtained by using the Euler-Maruyama method. Under the local Lipschitz condition, it is proved that the numerical solution of the equation converges to its analytic solution in the sense of mean square. Finally, a numerical example is given to verify the proposed conclusions.) We discuss a class of age-dependent fuzzy stochastic population systems under environmental pollution. The model takes into account the effects of environmental pollution and environmental noise on the population. And let the initial value be a fuzzy number. Under bounded and Lipschitz conditions, using Ito formula and Gronwall Lemma, the mean-square escape of age-dependent fuzzy stochastic population system under environmental pollution is given.
【學(xué)位授予單位】:寧夏大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O211.63
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李強(qiáng);張啟敏;辛志賢;;分?jǐn)?shù)Brown運(yùn)動(dòng)時(shí)變隨機(jī)種群收獲系統(tǒng)數(shù)值解的均方散逸性[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2017年02期
2 李強(qiáng);張啟敏;;廣義Khasminskii-type條件下與年齡相關(guān)隨機(jī)時(shí)滯種群系統(tǒng)的數(shù)值解[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2016年18期
3 楊莉;張啟敏;;隨機(jī)種群模型數(shù)值解的均方散逸性[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2016年11期
4 馬婧;張啟敏;;隨機(jī)時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)的全局散逸性[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年02期
5 張新景;張啟敏;;基于年齡結(jié)構(gòu)帶跳與分?jǐn)?shù)Brown運(yùn)動(dòng)種群系統(tǒng)數(shù)值解的均方散逸性[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期
6 楊洪福;張啟敏;申芳芳;李西寧;;與年齡相關(guān)的模糊隨機(jī)種群擴(kuò)散系統(tǒng)的數(shù)值解[J];模糊系統(tǒng)與數(shù)學(xué);2015年01期
7 郭建敏;田海燕;;帶控制項(xiàng)的模糊微分方程的穩(wěn)定性[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2013年13期
8 蔡白光;甘四清;;積分微分方程多步Runge-Kutta方法的散逸性[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期
9 趙朝鋒;張啟敏;;帶Markov跳隨機(jī)種群收獲系統(tǒng)數(shù)值解的指數(shù)穩(wěn)定性[J];華僑大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
10 蔡白光;甘四清;;積分微分方程線性多步方法的散逸性[J];純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué);2011年05期
相關(guān)碩士學(xué)位論文 前1條
1 周稻祥;種群生態(tài)模型的分叉與穩(wěn)定性研究[D];重慶大學(xué);2013年
,本文編號(hào):1852694
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1852694.html