天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

基于模糊聚類的藍(lán)牙4.0室內(nèi)指紋定位方法研究

發(fā)布時間:2018-05-01 22:05

  本文選題:室內(nèi)定位 + 位置指紋; 參考:《蘭州交通大學(xué)》2017年碩士論文


【摘要】:室內(nèi)定位技術(shù)是指在室內(nèi)環(huán)境下,通過使用基站定位,慣性輔助定位等多種定位技術(shù)一起形成一套適用于室內(nèi)的位置定位方法,實(shí)現(xiàn)室內(nèi)環(huán)境下的位置感知。隨著無線通信技術(shù)的快速發(fā)展,人們在日常生活中對于室內(nèi)基于位置信息服務(wù)的需求越來越強(qiáng)烈,而高精度的室內(nèi)定位技術(shù)是獲取位置信息的關(guān)鍵,這使得高精度的室內(nèi)定位技術(shù)成為近年來的熱點(diǎn)課題。由于藍(lán)牙4.0具有功耗低、成本低、便于部署的特點(diǎn),本文使用其作為無線技術(shù)基礎(chǔ),結(jié)合有代表性的室內(nèi)位置指紋定位技術(shù)進(jìn)行研究和優(yōu)化。室內(nèi)位置指紋定位技術(shù)主要有兩個階段:信息庫建立階段和實(shí)時定位階段。為了提高算法性能,傳統(tǒng)優(yōu)化方法先對信息庫的位置信息進(jìn)行聚類,然后在定位階段使用K近鄰(KNN)算法進(jìn)行匹配,保證定位精度的同時減少算法計(jì)算量。本文針對傳統(tǒng)基于聚類的位置指紋定位方法中使用的模糊C均值(FCM)算法存在的缺陷,如對初始值敏感,易陷入局部最優(yōu)解等,引入了粒子群優(yōu)化算法,先求解FCM算法的初始值,之后進(jìn)行FCM聚類,這樣避免了算法陷入局部最優(yōu)解,提高了算法的定位精度和魯棒性。同時,針對信息庫建立階段的采樣成本問題,采用重心拉格朗日插值算法進(jìn)行優(yōu)化,在保證算法精度的同時降低采樣成本;在實(shí)時定位階段,采用模糊決策的方法,避免了KNN算法造成的誤差和計(jì)算冗余。最后,本文通過Matlab平臺進(jìn)行了優(yōu)化算法的總體設(shè)計(jì)及實(shí)驗(yàn)。實(shí)驗(yàn)對比了優(yōu)化前后定位算法的性能,包括信息庫建立階段中優(yōu)化前后的插值算法對定位性能的影響,優(yōu)化前后聚類算法性能對比,優(yōu)化前后定位算法的性能對比。根據(jù)本文實(shí)驗(yàn)結(jié)果分析,改進(jìn)后的位置指紋定位方法在定位準(zhǔn)確度和定位實(shí)時性上都有了較好的改善。增加插值算法后,也能在較好地保證精度的同時顯著減少采樣成本。
[Abstract]:Indoor positioning technology refers to the indoor environment, through the use of base station positioning, inertial auxiliary positioning and other positioning techniques together to form a set of indoor location methods, to achieve indoor location perception. With the rapid development of wireless communication technology, people need more and more indoor location-based information service in daily life, and high-precision indoor positioning technology is the key to obtain location information. This makes high-precision indoor positioning technology become a hot topic in recent years. Because Bluetooth 4.0 has the characteristics of low power consumption, low cost and easy to deploy, this paper uses Bluetooth 4.0 as the wireless technology foundation, combined with the representative indoor location fingerprint location technology to study and optimize. There are two main phases of indoor location fingerprint location: information base establishment and real-time location. In order to improve the performance of the algorithm, the traditional optimization methods first cluster the location information of the information base, and then use the K-nearest neighbor KNN algorithm to match in the localization stage to ensure the accuracy of the location and reduce the computational complexity of the algorithm. Aiming at the shortcomings of the fuzzy C-means FCM algorithm used in the traditional location fingerprint location method based on clustering, such as being sensitive to the initial value and easy to fall into the local optimal solution, the particle swarm optimization algorithm is introduced to solve the initial value of the FCM algorithm. Then FCM clustering is carried out, which avoids the algorithm falling into local optimal solution, and improves the location accuracy and robustness of the algorithm. At the same time, aiming at the cost of sampling in the stage of information base establishment, the Lagrange interpolation algorithm of gravity center is used to optimize the algorithm to ensure the accuracy of the algorithm and to reduce the sampling cost, and in the real-time positioning stage, the fuzzy decision method is adopted. The error caused by KNN algorithm and computational redundancy are avoided. Finally, the overall design and experiment of the optimization algorithm are carried out on the Matlab platform. The performance of the pre-and post-optimization localization algorithm is compared, including the influence of the pre-and post-optimization interpolation algorithm on the location performance, the performance comparison of the pre-and post-optimization clustering algorithm, and the performance comparison of the pre-and post-optimization localization algorithm. According to the experimental results of this paper, the improved location fingerprint localization method has better accuracy and real time. After adding the interpolation algorithm, the sampling cost can be significantly reduced while the precision is better guaranteed.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN925

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曹雪朋;施偉斌;;基于RSSI的WSN室內(nèi)定位系統(tǒng)研究[J];電子科技;2017年01期

2 宣杰;張琳;王汝傳;;基于改進(jìn)PSO的自適應(yīng)FCM聚類算法[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2016年06期

3 金純;馬金輝;方天恩;岳宗田;;基于時空相似模型的藍(lán)牙室內(nèi)定位RSSI指紋插值方法[J];科學(xué)技術(shù)與工程;2016年28期

4 楊慧琳;黃智剛;劉久文;杜元鋒;;基于核模糊C均值指紋庫管理的WIFI室內(nèi)定位方法[J];浙江大學(xué)學(xué)報(工學(xué)版);2016年06期

5 陶佳峰;楊曉洪;王劍平;張果;;基于BLE的室內(nèi)指紋定位優(yōu)化技術(shù)[J];安徽農(nóng)業(yè)科學(xué);2016年08期

6 崔亮;徐玉冰;程耀瑜;;一種改進(jìn)的FCM聚類算法在噪聲圖像分割中的應(yīng)用[J];中北大學(xué)學(xué)報(自然科學(xué)版);2016年01期

7 Xuqing Sun;Jingyuan Duan;Yonggang Zou;Ancun Shi;;Impact of multipath effects on theoretical accuracy of TOA-based indoor VLC positioning system[J];Photonics Research;2015年06期

8 趙陽光;;面向高精度的室內(nèi)定位技術(shù)現(xiàn)狀與發(fā)展趨勢[J];電信網(wǎng)技術(shù);2015年11期

9 王弼;黃成;;基于樣條插值的RFID室內(nèi)定位算法[J];計(jì)算機(jī)仿真;2015年11期

10 瞿玲玉;楊恒新;張昀;;基于無源UHF RFID的一種室內(nèi)定位算法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年06期

相關(guān)博士學(xué)位論文 前1條

1 王縱虎;聚類分析優(yōu)化關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2012年

相關(guān)碩士學(xué)位論文 前6條

1 毛紅文;基于模糊聚類的位置指紋室內(nèi)定位優(yōu)化技術(shù)研究[D];云南大學(xué);2014年

2 曹U,

本文編號:1831213


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1831213.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e0843***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com