基于能量和小波變換的雙門限聯(lián)合頻譜感知
發(fā)布時間:2018-04-11 22:15
本文選題:聯(lián)合檢測 + 小波變換。 參考:《北京郵電大學學報》2017年04期
【摘要】:傳統(tǒng)的能量感知算法對噪聲比較敏感,在較低的信噪比條件下檢測準確性易受到影響,循環(huán)特征檢測法計算復雜度偏高,為此提出了基于能量檢測和小波變換(WT)感知的雙門限聯(lián)合檢測算法.該算法對雙門限區(qū)間以外的區(qū)域采用能量檢測進行判定,雙門限范圍內的不確定區(qū)域進行小波感知,并根據(jù)信道中噪聲不確定性自適應調整雙門限值,當信道質量較好時,減小兩門限之間的距離,否則增大兩門限之間的距離,從而控制進行小波感知的概率.仿真結果表明,此算法有效地提高了低信噪比條件下系統(tǒng)的檢測性能,降低了算法的復雜度.
[Abstract]:The traditional energy sensing algorithm is sensitive to noise, and the accuracy of detection is easy to be affected under the condition of low signal-to-noise ratio, and the computational complexity of cyclic feature detection is on the high side.A dual threshold joint detection algorithm based on energy detection and wavelet transform WT-sensing is proposed.In this algorithm, energy detection is used to determine the region outside the double threshold, and the uncertain region in the range of double threshold is sensed by wavelet, and the double threshold value is adjusted adaptively according to the noise uncertainty in the channel. When the channel quality is better,The distance between the two thresholds is reduced or the distance between the two thresholds is increased to control the probability of wavelet sensing.The simulation results show that the proposed algorithm can effectively improve the detection performance and reduce the complexity of the system under the condition of low signal-to-noise ratio (SNR).
【作者單位】: 北京郵電大學電子工程學院;河南理工大學計算機科學與技術學院;
【基金】:國家自然科學基金項目(60872149) 河南省科技攻關項目(172102210023)
【分類號】:TN925
【相似文獻】
相關期刊論文 前10條
1 王波,
本文編號:1737862
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1737862.html