天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于區(qū)域劃分的極化SAR圖像分類方法研究

發(fā)布時間:2018-12-15 23:26
【摘要】:極化合成孔徑雷達((Polarimetric Synthetic Aperture Radar,POLSAR)極化由于能從多個極化通道獲取數(shù)據(jù),相較與普通SAR可以獲取到更加豐富的地物特征而受到矚目。極化SAR在軍用及民用方面都有著重要的發(fā)展前景。通過極化SAR對目標進行識別可以有效幫助部隊在戰(zhàn)爭中著重打擊敵軍的重要部位。不僅如此,極化SAR數(shù)據(jù)為地質(zhì)災害的檢測評估、海冰厚度探測、森林火災檢測等提供了數(shù)據(jù)基礎。目前關于極化SAR的應用研究是一大熱點,充分利用極化SAR數(shù)據(jù)獲取信息具有重要的研究意義。作為極化SAR圖像解譯的重要組成部分,極化SAR圖像分類也受到國際遙感領域的重視,成為重要的研究方向。1.本文提出了一種基于近鄰傳播聚類與區(qū)域增長的極化SAR圖像分類方法。該算法主要是通過特征提取與分水嶺算法得到區(qū)域過分割結(jié)果,然后利用基于區(qū)域的K-means算法進行初始區(qū)域劃分,減少過分割區(qū)域的數(shù)量,接著利用基于區(qū)域的近鄰傳播聚類進行分類,充分考慮圖像的空間相關性,使用區(qū)域增長方法來提高分類準確率,最終通過對邊界點的Wishart分類得到分類結(jié)果。該方法通過將過分割后得到的勻質(zhì)區(qū)域作為分類單元,有效降低了極化數(shù)據(jù)中相干斑的影響,提高分類精度。2.本文提出了一種改進的基于分水嶺的區(qū)域劃分方法。將分水嶺得到的過分割區(qū)域作為分析單元,充分利用區(qū)域的空間信息,獲取每一個區(qū)域的鄰接信息,并結(jié)合邊緣懲罰,計算相鄰區(qū)域間的區(qū)域合并評價值,合并相互都為最適合合并的相鄰區(qū)域,并得到區(qū)域劃分結(jié)果,大大降低了過分割后的區(qū)域數(shù)量,有效地將勻質(zhì)區(qū)域內(nèi)相鄰的具有相同地物的區(qū)域合并起來,并且區(qū)域邊緣保持良好。3.本文提出了一種基于區(qū)域劃分的無監(jiān)督極化SAR圖像分類方法。通過一種新的極化特征提取及邊緣強度計算方法,運用分水嶺算法得到過分割結(jié)果,然后利用改進的基于分水嶺的區(qū)域劃分方法,將過分割后得到的小塊區(qū)域劃分為較大區(qū)域,最后利用基于區(qū)域的近鄰傳播聚類與一種考慮空間相關性的Wishart分類器進行分類,得到最終分類結(jié)果。該分類方法能夠得到較好的分類結(jié)果。
[Abstract]:Polarimetric synthetic Aperture Radar (Polarimetric Synthetic Aperture Radar,POLSAR) polarization has attracted much attention due to its ability to obtain data from multiple polarimetric channels, which is more abundant than that of ordinary SAR. Polarized SAR has important prospects in both military and civil fields. The identification of targets by polarized SAR can effectively help the troops to focus on the important positions of the enemy in the war. Moreover, polarized SAR data provide data basis for geological hazard detection and assessment, sea ice thickness detection, forest fire detection and so on. At present, the research on the application of polarized SAR is a hot spot. It is of great significance to make full use of polarized SAR data to obtain information. As an important part of polarimetric SAR image interpretation, polarimetric SAR image classification has also been paid attention to in the field of international remote sensing, and has become an important research direction. 1. A polarimetric SAR image classification method based on nearest neighbor propagation clustering and regional growth is proposed in this paper. The algorithm is mainly based on feature extraction and watershed algorithm to get the results of region over-segmentation, and then the region based K-means algorithm is used to divide the initial region to reduce the number of over-segmented regions. Then the region based nearest neighbor propagation clustering is used to classify the image, and the spatial correlation of the image is fully considered, and the region growth method is used to improve the classification accuracy. Finally, the classification results are obtained by the Wishart classification of the boundary points. By using the homogeneous region obtained by over-segmentation as the classification unit, the effect of speckle in polarimetric data is effectively reduced and the classification accuracy is improved by 2.2. In this paper, an improved watershed based region division method is proposed. The over-segmented region obtained from the watershed is taken as the analysis unit, the spatial information of the region is fully utilized, the adjacent information of each region is obtained, and the combined evaluation value of the adjacent region is calculated by combining with the edge punishment. Merging each other is the most suitable adjacent region for merging, and obtains the result of regional division, which greatly reduces the number of over-segmented regions and effectively combines the adjacent regions with the same features in homogeneous regions. And the edge of the region remains good. 3. In this paper, an unsupervised polarimetric SAR image classification method based on region partition is proposed. Through a new method of polarization feature extraction and edge strength calculation, the watershed algorithm is used to obtain the over-segmentation results, and then the improved watershed based region partition method is used to divide the over-segmented small area into larger regions. Finally, the region based nearest neighbor propagation clustering and a Wishart classifier considering spatial correlation are used to classify, and the final classification results are obtained. The classification method can get better classification results.
【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN957.52

【相似文獻】

相關期刊論文 前10條

1 杜玫芳;;數(shù)字圖書館中圖像分類技術研究[J];現(xiàn)代計算機(專業(yè)版);2008年01期

2 周曉光;匡綱要;萬建偉;;極化SAR圖像分類綜述[J];信號處理;2008年05期

3 秦磊;高文;;基于內(nèi)容相關性的場景圖像分類方法[J];計算機研究與發(fā)展;2009年07期

4 楊懌菲;;一種基于圖像特征的圖像分類方法[J];現(xiàn)代電子技術;2009年14期

5 畢萍;;圖像分類方法的對比研究[J];現(xiàn)代電子技術;2009年18期

6 孟海東;郝永寬;王淑玲;;聚類分析在非監(jiān)督圖像分類中的應用研究[J];計算機與現(xiàn)代化;2009年10期

7 姚曉昆;邱桃榮;葛寒娟;劉清;王劍;;基于多層次相容粒度的圖像分類[J];河北師范大學學報(自然科學版);2010年01期

8 郭立君;趙杰煜;史忠植;;生成模型與判別方法相融合的圖像分類方法[J];電子學報;2010年05期

9 黃濤;陳三風;;人工場景圖像分類技術研究[J];深圳信息職業(yè)技術學院學報;2010年02期

10 張杰;郭小川;金城;陸偉;;基于特征互補率矩陣的圖像分類方法[J];計算機工程;2011年04期

相關會議論文 前10條

1 鄭海紅;曾平;;一種基于圖像分類的逆半調(diào)算法[A];’2004計算機應用技術交流會議論文集[C];2004年

2 文振q;歐陽杰;朱為總;;基于語義特征與支持向量機的圖像分類[A];中國電子學會第十六屆信息論學術年會論文集[C];2009年

3 王海峰;管亮;;基于顏色特征的圖像分類技術在油品分析中的應用[A];中國儀器儀表學會第六屆青年學術會議論文集[C];2004年

4 陳思坤;吳洪;;基于圖分塊并利用空間金字塔的醫(yī)學圖像分類[A];第六屆和諧人機環(huán)境聯(lián)合學術會議(HHME2010)、第19屆全國多媒體學術會議(NCMT2010)、第6屆全國人機交互學術會議(CHCI2010)、第5屆全國普適計算學術會議(PCC2010)論文集[C];2010年

5 張淑雅;趙曉宇;趙一鳴;李均利;;基于SVM的圖像分類[A];第十三屆全國圖象圖形學學術會議論文集[C];2006年

6 李博;韓萍;;基于壓縮感知和SVM的極化SAR圖像分類[A];第二十七屆中國(天津)2013IT、網(wǎng)絡、信息技術、電子、儀器儀表創(chuàng)新學術會議論文集[C];2013年

7 朱松豪;胡娟娟;孫偉;;基于非歐空間高階統(tǒng)計的圖像分類方法[A];第25屆中國控制與決策會議論文集[C];2013年

8 潘海為;李建中;張煒;;基于像素聚類的腦部醫(yī)學圖像分類[A];第二十屆全國數(shù)據(jù)庫學術會議論文集(研究報告篇)[C];2003年

9 吳霜;張一飛;修非;王大玲;鮑玉斌;于戈;;基于興趣點特征提取的醫(yī)學圖像分類[A];第二十四屆中國數(shù)據(jù)庫學術會議論文集(研究報告篇)[C];2007年

10 武進;尹愷;王長明;張家才;;SVDM在蔬菜病害圖像分類中的應用[A];圖像圖形技術與應用進展——第三屆圖像圖形技術與應用學術會議論文集[C];2008年

,

本文編號:2381458

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/wltx/2381458.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶bb084***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com