基于局部與非局部策略的極化SAR相干斑抑制研究
[Abstract]:Polarimetric synthetic Aperture Radar (POLSAR) is a kind of multi-parameter, multi-channel microwave imaging radar, which can project objects to a certain extent, and can obtain scattering echo of the target in different polarization state, and describe the information contained in the target better. It has become a new technology in the field of remote sensing and a new trend in the development of synthetic Aperture Radar (SAR), which has been widely used in military, national defense, environment, agriculture and other fields. However, due to the principle defects of coherent imaging, there is a certain deviation between the target information obtained by polarized SAR system and the actual information, which leads to speckle noise in polarized SAR data, which seriously affects the interpretation and subsequent application of the data. Therefore, the suppression of speckle noise becomes the most important problem in the application of polarimetric SAR data. In this paper, the statistical distribution and speckle noise model of SAR data and polarized SAR data are introduced, and three speckle suppression algorithms are proposed. The main contents are as follows: 1. Based on the bilateral filtering of polarimetric SAR data and the relative total variation, an edge detection algorithm based on edge detection and two-sided filtering is proposed for polarimetric SAR speckle suppression. The homogeneous region and the edge texture detail area of the image are detected, and different values of the brightness information smoothing parameters of the bilateral filtering are set in different regions to make it more suitable for the processed pixels. The algorithm is simple and fast and can directly process the polarization covariance matrix C or the polarized coherence matrix T. Experimental results show that the proposed algorithm not only has relatively good performance for speckle noise suppression, but also maintains the edge texture details relatively well. 2. A polarimetric SAR speckle suppression algorithm based on non-local two-sided filtering and non-local mean filtering is proposed, which selects as many similar image blocks as possible. These similar image blocks are filtered by two sides. Finally, the results of the similar image blocks are weighted by non-local weighted averaging. The structural similarity of the image blocks and the pixel similarity of the single pixel are taken into account in both the structural similarity of the image blocks and the pixel similarity of the single pixel. This algorithm combines local and non-local strategies, not only considering the advantages of bilateral filtering, but also considering the advantages of non-local mean filtering. The experimental results show that the proposed algorithm has better speckle suppression effect on polarized SAR images both in homogeneous region and in edge texture detail region. The SVD algorithm with additive Gao Si white noise image is applied to speckle suppression of SAR data. Aiming at the statistical distribution of SAR data and the speckle noise model, In obtaining the SVD sample matrix, the Euclidean distance is replaced by the similarity distance suitable for SAR data, and a formula for calculating the threshold parameters of SVD for speckle noise of SAR data is proposed. In addition, considering the characteristics of polarized SAR data, the SVD method applied to speckle suppression of SAR data is extended to polarimetric SAR data to obtain similar image blocks and SVD threshold parameters on Span data. In maintaining polarization information has a certain role. Experimental results show that the proposed algorithm can achieve better performance in both SAR data and polarimetric SAR data, and its greater advantage lies in its effectiveness in single-view polarimetric SAR data processing. This paper is supported by the National Natural Science Foundation (No.61173092), the New Century Talent support Program (No.66ZY110) and the Shaanxi Province Scientific and technological Research and Development Program (No.2013KJXX-64).
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN957.52
【共引文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李小明;程子光;甘少武;;基于遺傳算法的雷達(dá)組網(wǎng)極化管理[J];艦船電子工程;2009年04期
2 王雪松;常宇亮;李永禎;戴幻堯;何密;肖順平;;極化雷達(dá)的同時(shí)全極化測(cè)量與校準(zhǔn)技術(shù)[J];科技導(dǎo)報(bào);2011年26期
3 常宇亮;戴幻堯;李永禎;王雪松;;瞬態(tài)極化雷達(dá)中極化測(cè)量與校準(zhǔn)的數(shù)學(xué)原理及實(shí)驗(yàn)驗(yàn)證[J];中國(guó)電子科學(xué)研究院學(xué)報(bào);2010年02期
4 黨曉江;李政杰;田波;;電磁波完全極化研究[J];中國(guó)電子科學(xué)研究院學(xué)報(bào);2013年02期
5 郭凱;黃雙華;劉濤;;簡(jiǎn)單雷達(dá)目標(biāo)空域瞬態(tài)極化特性研究[J];艦船電子工程;2013年12期
6 常宇亮;王雪松;李永禎;肖順平;;極化測(cè)量雷達(dá)的信號(hào)選擇與處理[J];中國(guó)科學(xué)(F輯:信息科學(xué));2009年12期
7 吳仁彪;盧曉光;李海;韓雁飛;;機(jī)載前視風(fēng)切變檢測(cè)氣象雷達(dá)的研究進(jìn)展[J];數(shù)據(jù)采集與處理;2014年04期
相關(guān)會(huì)議論文 前1條
1 李賀;洪家財(cái);張若禹;;底部刻槽彈丸飛行姿態(tài)測(cè)量的RCS優(yōu)化[A];第十屆中國(guó)科協(xié)年會(huì)信息化與社會(huì)發(fā)展學(xué)術(shù)討論會(huì)分會(huì)場(chǎng)論文集[C];2008年
相關(guān)博士學(xué)位論文 前7條
1 常宇亮;瞬態(tài)極化雷達(dá)測(cè)量、檢測(cè)與抗干技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
2 施龍飛;雷達(dá)極化抗干擾技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2007年
3 卜彥龍;面向INS/SAR組合導(dǎo)航的SAR景象區(qū)域適配性研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
4 周廣益;基于視覺(jué)認(rèn)知的極化SAR圖像應(yīng)用關(guān)鍵技術(shù)研究[D];清華大學(xué);2011年
5 劉芳芳;認(rèn)知家庭基站極化域頻譜感知與資源管理研究[D];北京郵電大學(xué);2012年
6 王元?dú)J;基于雷達(dá)極化的彈丸運(yùn)動(dòng)特征處理方法研究[D];哈爾濱工業(yè)大學(xué);2012年
7 王娜;極化SAR圖像人造目標(biāo)檢測(cè)技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉楨;基于極化信息的SAR地物分類技術(shù)研究[D];解放軍信息工程大學(xué);2010年
2 溫富東;寬帶變極化米波雷達(dá)原理性試驗(yàn)與實(shí)測(cè)數(shù)據(jù)處理[D];西安電子科技大學(xué);2011年
3 左美霞;基于散射特性相似性的極化SAR圖像相干斑抑制研究[D];合肥工業(yè)大學(xué);2011年
4 陶海鵬;基于偏振信息的主動(dòng)激光水下目標(biāo)成像探測(cè)研究[D];南京理工大學(xué);2011年
5 宣延艷;極化SAR相干信息配準(zhǔn)與變化檢測(cè)算法研究[D];電子科技大學(xué);2011年
6 鐘耀霞;基于極化敏感陣列的空間到達(dá)角和極化參數(shù)的聯(lián)合估計(jì)[D];電子科技大學(xué);2011年
7 張軼鵬;地震電磁疑似異常特征提取與地震相關(guān)性分析[D];哈爾濱工業(yè)大學(xué);2010年
8 游先亮;極化信息在彈載雷達(dá)系統(tǒng)目標(biāo)檢測(cè)中的應(yīng)用[D];南京航空航天大學(xué);2011年
9 秦建;極化寬帶雷達(dá)的自適應(yīng)目標(biāo)檢測(cè)[D];哈爾濱工業(yè)大學(xué);2011年
10 金桂玉;目標(biāo)近場(chǎng)電磁散射特性計(jì)算與應(yīng)用[D];南京理工大學(xué);2012年
,本文編號(hào):2275692
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/2275692.html