基于Spark的粒子群算法并行編程及其在水庫調(diào)度中的應(yīng)用
[Abstract]:Because of the huge amount of water resources in Heihe River Basin and the complex data relationship, it is difficult to apply conventional technology to optimal dispatching. In this paper, aiming at the problem of water resources scheduling in Heihe River Basin, big data processing and evolutionary computing techniques are applied to solve the problem, and a parallel particle swarm optimization (PSO) algorithm is proposed based on big data computational framework (Spark). A multi-objective optimal dispatching system for reservoirs in Heihe River Basin is developed. In the course of the research and development, the author analyzes the characteristics of the water resources optimal dispatching system in Heihe River Basin, transforms the multiple objectives into a single target, and obtains the solution model of the problem. Then the parallel algorithm programming model, the particle swarm optimization algorithm and its parallelization strategy are studied, and the parallelization method of particle swarm optimization algorithm based on Spark big data computing framework is also studied. On the basis of theoretical and technical research, big data support platform is built on the basis of Hadoop2.7.1,Sparkl.5.2,Spark on Yarn software, and the acquired water resources data in Heihe River Basin is stored in the distributed file system (HDFS) of the platform. Then under the Ubuntu Linux operating system environment and the Spark platform, the parallel program of multi-objective optimal operation of reservoir group based on particle swarm optimization algorithm is developed by using Scala language, and big data of reservoir dispatching can be processed. Multiobjective optimal dispatching system for reservoir groups with high speed operation optimization program. The data loading, program running and result querying of this scheduling system are all carried out under the Ubuntu Linux operating system and Spark platform, interface. It is very difficult for the common users who are not familiar with the running mechanism of Spark. In order to solve this problem, we have also developed an application platform of multi-objective optimal dispatching system for reservoir groups, which realizes big data's uploading, downloading, deleting and querying. As well as the Spark big data platform to handle the application task submission run and SQL query and other functions. The research and development of this subject will play a positive role in promoting the efficient operation of water resources optimal dispatching system, and it will also have a good reference value for the development and application of big data parallel programming based on Spark platform.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18;TV697.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 劉心愿;朱勇輝;郭小虎;渠庚;;水庫多目標(biāo)優(yōu)化調(diào)度技術(shù)比較研究[J];長江科學(xué)院院報;2015年07期
2 彭安幫;彭勇;周惠成;;跨流域調(diào)水條件下水庫群聯(lián)合調(diào)度圖的多核并行計算研究[J];水利學(xué)報;2014年11期
3 王衛(wèi)鋒;田亮;;基于改進(jìn)量子粒子群的分布式并行計算框架設(shè)計[J];計算機測量與控制;2014年06期
4 蔡勇;李光耀;王琥;;基于CUDA的并行粒子群優(yōu)化算法的設(shè)計與實現(xiàn)[J];計算機應(yīng)用研究;2013年08期
5 周云斌;章旭東;;粒子群算法并行化方法研究[J];科技創(chuàng)新導(dǎo)報;2012年29期
6 職為梅;王芳;范明;楊勇;;并行環(huán)境下的同步異步PSO算法[J];計算機技術(shù)與發(fā)展;2009年03期
7 蔣作;高毅;;關(guān)于串行程序并行化[J];云南民族大學(xué)學(xué)報(自然科學(xué)版);2007年03期
8 鮑衛(wèi)鋒;黃介生;楊芳;謝華;趙微;;基于多目標(biāo)動態(tài)規(guī)劃模型的水庫優(yōu)化調(diào)度研究[J];西安理工大學(xué)學(xué)報;2005年04期
9 羅昕,黃仲偉,,李蓮治;一種將串行程序劃分成并行任務(wù)的方法[J];哈爾濱工業(yè)大學(xué)學(xué)報;1995年05期
相關(guān)會議論文 前1條
1 張蕾;陳月輝;楊波;;基于并行PSO的神經(jīng)網(wǎng)絡(luò)優(yōu)化算法的研究[A];2005年全國理論計算機科學(xué)學(xué)術(shù)年會論文集[C];2005年
相關(guān)博士學(xué)位論文 前2條
1 駱濤;面向大數(shù)據(jù)處理的并行計算模型及性能優(yōu)化[D];中國科學(xué)技術(shù)大學(xué);2015年
2 王贏;梯級水庫群優(yōu)化調(diào)度方法研究與系統(tǒng)實現(xiàn)[D];華中科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 鄭鳳飛;基于Spark的并行推薦算法的研究與實現(xiàn)[D];西南交通大學(xué);2016年
2 陳名輝;基于YARN和Spark框架的數(shù)據(jù)挖掘算法并行研究[D];湖南師范大學(xué);2016年
3 鄭偉;Spark下MPI/GPU并行計算處理機制的研究[D];中國海洋大學(xué);2015年
4 楊志偉;基于Spark平臺推薦系統(tǒng)研究[D];中國科學(xué)技術(shù)大學(xué);2015年
5 余征;基于Hadoop的人臉圖像識別并行處理方法研究與實現(xiàn)[D];西南交通大學(xué);2015年
6 王韜;基于Spark的聚類集成系統(tǒng)研究與設(shè)計[D];西南交通大學(xué);2015年
7 李文棟;基于Spark的大數(shù)據(jù)挖掘技術(shù)的研究與實現(xiàn)[D];山東大學(xué);2015年
8 梁彥;基于分布式平臺Spark和YARN的數(shù)據(jù)挖掘算法的并行化研究[D];中山大學(xué);2014年
9 邱榮財;基于Spark平臺的CURE算法并行化設(shè)計與應(yīng)用[D];華南理工大學(xué);2014年
10 唐振坤;基于Spark的機器學(xué)習(xí)平臺設(shè)計與實現(xiàn)[D];廈門大學(xué);2014年
本文編號:2299088
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/2299088.html