基于小波-BP神經(jīng)網(wǎng)絡(luò)的貝葉斯概率組合預(yù)測(cè)模型及其在預(yù)報(bào)調(diào)度中的應(yīng)用
[Abstract]:Long-term runoff forecasting method has been a hot and difficult point in domestic and international research. From traditional cause analysis method, hydrological statistics method, time series analysis method and so on, it has developed to modern artificial neural network, wavelet theory, etc. The grey system and chaos theory have their own advantages because of their different mechanism and applicable environment. In addition, with the increasingly significant role of hydropower stations in the power network system, and the increasingly complex operation and operation of hydropower stations in the grid system, the long-term runoff forecasting methods are further studied to supplement and improve the relevant theories and methods in order to be reasonable. It is of great theoretical significance and application prospect to improve the precision of medium and long term runoff forecasting and to form the dispatching strategy to guide reservoir operation on this basis. The main work of this paper is as follows: (1) A Bayesian probability combination prediction model based on wavelet BP neural network is established by using a linear regression model to simulate the prior distribution and likelihood function of Bayesian analysis. It is applied to forecast monthly runoff of Namngum reservoir in Laos. In addition, compared with the deterministic hydrological forecasting method, the combined forecasting model can quantitatively describe the uncertainty of hydrological forecast in the form of distribution function, which provides more for the subsequent reservoir operation. (2) taking the Namngum hydropower station as an example, based on the combined forecast results, the optimal dispatching model with the maximum generating capacity as the objective function is established and solved by using the POA algorithm; By comparing the operation results with those under the existing operation mode, the results show that the application of WA-BP-BY model forecast results can further improve the power generation efficiency of the Namngum hydropower station reservoir on the basis of the original prediction results. It can provide reference basis for future hydropower station reservoir power generation plan formulation.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TV697.1;TV124
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 殷峻暹;蔣云鐘;魯帆;;基于組合預(yù)測(cè)模型的水庫徑流長(zhǎng)期預(yù)報(bào)研究[J];人民黃河;2008年01期
2 胡明罡;基于遺傳算法的梯級(jí)水庫調(diào)度問題的研究[J];濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
3 張勇傳;邴鳳山;劉鑫卿;付昭陽;揭明蘭;;水庫群優(yōu)化調(diào)度理論的研究—SEPOA方法[J];水電能源科學(xué);1987年03期
4 徐鼎甲,張玉山;混聯(lián)水電站群實(shí)時(shí)聯(lián)合優(yōu)化調(diào)度[J];水力發(fā)電學(xué)報(bào);2001年03期
5 夏軍;中長(zhǎng)期徑流預(yù)報(bào)的一種灰關(guān)聯(lián)模式識(shí)別與預(yù)測(cè)方法[J];水科學(xué)進(jìn)展;1993年03期
6 邱林,陳守煜,聶相田;模糊模式識(shí)別神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型及其應(yīng)用[J];水科學(xué)進(jìn)展;1998年03期
7 張玉山,左園忠,喬秋文;面向?qū)ο蠹夹g(shù)在梯級(jí)水電站調(diào)度中的應(yīng)用[J];水力發(fā)電;2002年01期
8 游進(jìn)軍,紀(jì)昌明,付湘;基于遺傳算法的多目標(biāo)問題求解方法[J];水利學(xué)報(bào);2003年07期
9 繆益平,紀(jì)昌明;運(yùn)用改進(jìn)神經(jīng)網(wǎng)絡(luò)算法建立水庫調(diào)度函數(shù)[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2003年01期
10 楊旭,欒繼虹,馮國(guó)章;中長(zhǎng)期水文預(yù)報(bào)研究評(píng)述與展望[J];西北農(nóng)業(yè)大學(xué)學(xué)報(bào);2000年06期
,本文編號(hào):2167613
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/2167613.html