相同尺寸管道雙車在不同車間距下形成的縫隙流水力特性研究
本文選題:流量 + 間距; 參考:《太原理工大學(xué)》2014年碩士論文
【摘要】:隨著科技和現(xiàn)代社會(huì)的飛速發(fā)展,我國(guó)的經(jīng)濟(jì)規(guī)模不斷擴(kuò)大,國(guó)民環(huán)保意識(shí)也隨之不斷增強(qiáng)。傳統(tǒng)的交通運(yùn)輸方式—公路運(yùn)輸、鐵路運(yùn)輸、水路運(yùn)輸和航空運(yùn)輸,已經(jīng)不能滿足現(xiàn)代社會(huì)的發(fā)展需求,而筒裝料管道水力輸送技術(shù)作為一種新型的節(jié)能環(huán)保的運(yùn)輸方式,是對(duì)現(xiàn)有交通運(yùn)輸方式的一種補(bǔ)充和完善,具有廣闊的發(fā)展前景。本文結(jié)合國(guó)家自然科學(xué)基金項(xiàng)目“管道縫隙螺旋流水力特性研究(51109115)”和“管道列車水力輸送能耗研究(51179116)”,采用理論分析和模型試驗(yàn)相結(jié)合的方法,在不同間距條件下,對(duì)管道雙車的縫隙流進(jìn)行分析研究及其水力損失進(jìn)行了分析研究。得出主要結(jié)論如下: 1、流量相同間距變化時(shí),在管道后車測(cè)試斷面和管道前車測(cè)試斷面,軸向流速分布具有以下特點(diǎn):軸向流速隨著測(cè)點(diǎn)距離管道中心距離的增大呈現(xiàn)先增后減,且隨著間距增大,軸向流速梯度趨于穩(wěn)定。同時(shí),可以看出間距為50cm時(shí)軸向速度比間距為20cm和間距為80cm的軸向速度小。 2、流量相同間距變化時(shí),在管道后車和前車測(cè)試斷面,徑向流速分布具有以下特點(diǎn):間距為80cm時(shí)最為均勻,間距為50cm時(shí)次之,而間距為20cm時(shí)最不均勻隨著間距的變化,徑向流速分布密集區(qū)域基本一致,但是間距越大,密集區(qū)域越不明顯。 3、流量相同間距變化時(shí),在管道后車和前車測(cè)試斷面,周向流速分布具有以下特點(diǎn):間距為20cm下前車、后車周向速度分布最為均勻,流速梯度最小,間距為50cm的次之,間距為80cm時(shí)最不均勻,流速梯度最大?拷艿纼(nèi)壁和管道車外壁的測(cè)點(diǎn)周向流速變化較大,不僅大小改變,方向也變化較大。隨著間距的增大,前后車之間的影響越來(lái)越小。 4、流量相同間距變化時(shí),車間斷面的軸向流速分布有如下規(guī)律:間距為80cm時(shí)軸向流速分布,比間距為50cm和20cm時(shí)更為均勻,而間距為50cm和80cm時(shí)的管道前車斷面軸向流速分布類似,間距為20cm時(shí)管道雙車車間環(huán)隙軸向流速分布最不均勻,且與其他兩個(gè)間距的分布相比有較大差異。同時(shí),可以看出間距為50cm時(shí)軸向速度比間距為20cm和間距為80cm的軸向速度小。 5、流量相同間距變化時(shí),車間斷面的徑向向流速分布有如下規(guī)律:徑向流速分布密集區(qū)域基本趨于一致,徑向流速分布隨著間距的增大,有先密集后趨于稀疏的分布特征。 6、流量相同間距變化時(shí),車間斷面的周向流速分布有如下規(guī)律:間距為20cm下的雙車車間環(huán)隙斷面周向速度分布最為均勻,流速梯度最小,間距為50cm的次之,間距為80cm最不均勻,流速梯度最大。隨著間距的增大,雙車車間環(huán)隙斷面周向流速分布的密集區(qū)域越來(lái)越明顯。 7、相同流量下測(cè)試段內(nèi)軸向速度的沿程分布圖可以看出,對(duì)流量不同情況下,軸向速度在測(cè)試段內(nèi)的變化基本可以分為4個(gè)階段;從三個(gè)間距的速度沿程分布可以看出,雙車之間相互影響的范圍在35cm-50cm之間:間距過(guò)小,雙車相互影響,導(dǎo)致軸向速度發(fā)生變化較大,周向和徑向速度影響較大,導(dǎo)致能耗增加;間距過(guò)大,雙車之間相互影響小,但是不經(jīng)濟(jì)且不利于實(shí)際運(yùn)用。因此從這點(diǎn)考慮雙車運(yùn)行的最佳間距應(yīng)在35cm-50cm之間。 8、在不同間距、不同流量的條件下,管道水流在測(cè)試段內(nèi)水力損失變化趨勢(shì)是一致的,即隨著距離的增加,水力損失也不斷的增加。在間距相同的情況下,流量越大,測(cè)試段內(nèi)水流的水力損失也越大;管道水流經(jīng)過(guò)第一個(gè)管道車時(shí)的水力損失小于管道水流經(jīng)過(guò)第二個(gè)管道車時(shí)的水力損失。 9、當(dāng)流量相同的情況下,間距不同,管道水流經(jīng)過(guò)管道車時(shí)水力損失,隨間距的增加先減小后增加,在本文中,間距為50cm時(shí),水力損失最小,水力損失增幅亦最小;當(dāng)間距為80cm時(shí),水力損失最大,且水力損失增幅也最大。 本文的研究成果,對(duì)筒裝料管道水力輸送技術(shù)的發(fā)展,具有重要的參考價(jià)值,為該技術(shù)的后續(xù)研究提供了寶貴的試驗(yàn)依據(jù),也為提高輸送效率、使其盡快實(shí)現(xiàn)工業(yè)化,提供了重要的理論依據(jù)。
[Abstract]:With the rapid development of science and technology and modern society , our country ' s economic scale is constantly expanding , and the consciousness of national environmental protection has been strengthened . Traditional modes of transportation - road transportation , railway transportation , waterway transportation and air transportation have not satisfied the development demands of modern society .
1 . At the same time , the axial flow velocity distribution has the following characteristics : axial flow velocity increases first and then decreases with the increase of the distance of the distance between the measuring point and the pipeline , and the axial velocity gradient tends to be stable as the distance increases . At the same time , it can be seen that the axial velocity is 20 cm and the axial velocity with the spacing of 80 cm is small as the spacing is 50 cm .
2 . The radial flow velocity distribution has the following characteristics : the spacing is 80 cm , the distance is 50 cm and the distance is 50 cm , and the distance is 20 cm . The radial flow velocity distribution is basically consistent with the change of spacing , but the larger the spacing , the less dense the dense area .
3 . When the flow rate is the same as that of the front vehicle , the distribution of the circumferential velocity of the front and rear vehicles has the following characteristics : the spacing is 20 cm , the velocity distribution is the most uniform , the velocity gradient is the smallest , the distance is 50 cm , the distance is 80 cm , the velocity gradient is the largest , and the velocity gradient is the biggest . The change of the velocity is not only the change of the size , but also the direction change . With the increase of the distance , the influence between the front and rear vehicles is smaller and smaller .
4 . At the same time , the axial velocity distribution of the cross section of the pipe is more uniform when the spacing is 80 cm , the axial velocity distribution is more uniform when the spacing is 50 cm and 20 cm , and the axial velocity distribution of the axial velocity of the pipe is not uniform when the spacing is 50 cm and 80 cm .
5 . The radial flow velocity distribution of the cross section of the workshop has the following rule : the radial flow velocity distribution is basically the same as that of the dense area , and the radial flow velocity distribution tends to be sparse with the increase of the spacing .
6 . At the same interval of flow , the circumferential velocity distribution of the cross section of the workshop has the following rule : the circumferential velocity distribution of the ring - gap section of the double - car workshop with the spacing of 20cm is the most uniform , the gradient of the flow velocity is the smallest , the spacing is 50 cm , the spacing is 80cm and the maximum velocity gradient is the maximum . As the distance increases , the dense area of the circumferential velocity distribution of the annular gap section of the double - vehicle workshop becomes more and more obvious .
7 . It can be seen that the change of axial velocity in the test section can be divided into 4 stages under different flow conditions .
It can be seen from the velocity distribution of three intervals that the mutual influence between the two vehicles ranges from 35 cm to 50 cm : the spacing is too small , the two vehicles interact with each other , resulting in a large change in the axial velocity , a large influence on the circumferential direction and radial velocity , which leads to an increase in energy consumption ;
The spacing is too large and the interaction between the two vehicles is small , but it is not economical and is not conducive to practical use . Therefore , the optimal spacing between the two vehicles should be between 35 cm and 50 cm in view of this point .
8 . Under the condition of different spacing and different flow , the change trend of hydraulic loss in the test section is consistent , that is , with the increase of distance , the hydraulic loss increases continuously . Under the same distance , the greater the flow rate , the greater the hydraulic loss of the water flow in the test section ;
The hydraulic loss when the pipe flow passes through the first pipe car is less than the hydraulic loss when the pipe water flows through the second pipeline vehicle .
9 . When the flow rate is the same , the distance is different , the hydraulic loss is decreased with the increase of the distance , the hydraulic loss is the least when the distance is 50 cm , and the increase of hydraulic loss is also the minimum .
When the spacing is 80cm , the hydraulic loss is the biggest , and the increase of hydraulic loss is also the biggest .
The research results of this paper have important reference value for the development of the hydraulic transport technology of the tube charging pipeline , which provides valuable experimental basis for the follow - up study of the technology , and also provides an important theoretical basis for improving the conveying efficiency and realizing industrialization as soon as possible .
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U171;TV134
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李炎炎;張耀平;姚應(yīng)峰;;真空管道運(yùn)輸系統(tǒng)管道模型結(jié)構(gòu)分析與實(shí)驗(yàn)內(nèi)容[J];河北交通科技;2008年01期
2 林愉;煤柱在煤漿管道中輸送的運(yùn)動(dòng)特征[J];化工礦物與加工;1999年01期
3 許賢良,朱兵,張軍,王傳禮;同心環(huán)形縫隙流理論研究[J];安徽理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
4 傅旭東,王光謙,董曾南;低濃度固液兩相流理論分析與管流數(shù)值計(jì)算[J];中國(guó)科學(xué)E輯:技術(shù)科學(xué);2001年06期
5 林愉;水平輸送管道內(nèi)圓柱狀型料的懸浮機(jī)理[J];金屬礦山;1999年10期
6 林愉;礦漿管道輸送尾砂型料的構(gòu)思與設(shè)計(jì)[J];金屬礦山;2000年10期
7 鄒偉生,吳桂鳳,黃家禎;長(zhǎng)距離漿體管道輸送管壁磨蝕研究[J];礦冶工程;2004年02期
8 白曉寧,胡壽根;漿體管道的阻力特性及其影響因素分析[J];流體機(jī)械;2000年11期
9 林愉,王福吉;型料輸送管道實(shí)驗(yàn)系統(tǒng)的設(shè)計(jì)研究[J];流體機(jī)械;2000年12期
10 林愉,楊慶煊,唐軍;煤漿管道水頭損失與煤顆粒ζ電位關(guān)系的研究[J];煤炭科學(xué)技術(shù);2005年03期
,本文編號(hào):2062873
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/2062873.html