基于時(shí)序貼近度與改進(jìn)SVM的水機(jī)軸心軌跡診斷
發(fā)布時(shí)間:2018-06-17 11:53
本文選題:水電機(jī)組 + 軸心軌跡 ; 參考:《排灌機(jī)械工程學(xué)報(bào)》2017年12期
【摘要】:為了提高水輪機(jī)組診斷的精確性,提出應(yīng)用時(shí)間序列模糊貼近度特征提取軸心軌跡特征參數(shù),通過(guò)改進(jìn)SVM模型并引入故障分類準(zhǔn)確性判定因子對(duì)參數(shù)化的水電機(jī)組軸心軌跡開展了智能診斷.應(yīng)用改進(jìn)SVM對(duì)時(shí)間序列特征引入正確率、錯(cuò)誤分類率計(jì)算方法,從而對(duì)診斷后軸心軌跡分類準(zhǔn)確性進(jìn)行判定,由此促進(jìn)運(yùn)行狀態(tài)設(shè)備智能診斷,提高故障診斷系統(tǒng)的自動(dòng)診斷水平及準(zhǔn)確率;引入多類分類支持向量機(jī)算法、分類準(zhǔn)確度判斷解決異常狀態(tài)下機(jī)組軸心軌跡特征參數(shù)無(wú)法識(shí)別、識(shí)別率低的問(wèn)題.通過(guò)對(duì)改進(jìn)擴(kuò)展時(shí)序距離時(shí)間序列貼近度度量算法的應(yīng)用解決了水電機(jī)組實(shí)時(shí)軸心軌跡特征參數(shù)準(zhǔn)確性差和實(shí)時(shí)性差的問(wèn)題.該方法提高了檢測(cè)精度,同時(shí)增強(qiáng)了人機(jī)交互性,具有重要的理論意義和實(shí)用價(jià)值.
[Abstract]:In order to improve the accuracy of hydraulic turbine diagnosis, the feature of fuzzy closeness degree of time series is applied to extract the characteristic parameters of axis locus. By improving the SVM model and introducing the accuracy factor of fault classification, the intelligent diagnosis of the axis locus of the parameterized hydropower unit is carried out. The improved SVM is used to calculate the correct rate and error classification rate of the time series features, so as to judge the accuracy of the axial trajectory classification after diagnosis, thus promoting the intelligent diagnosis of the running state equipment. To improve the automatic diagnosis level and accuracy of fault diagnosis system, the multi-class classification support vector machine algorithm is introduced to determine the classification accuracy to solve the problem that the characteristic parameters of the axis track of the unit can not be identified and the recognition rate is low under abnormal condition. Through the application of the improved time series closeness measurement algorithm of extended time series, the problems of poor accuracy and real-time performance of the characteristic parameters of the real time axis trajectory of hydropower units are solved. This method improves the accuracy of detection and enhances the human-computer interaction, which has important theoretical significance and practical value.
【作者單位】: 蘭州工業(yè)學(xué)院電氣工程學(xué)院;國(guó)網(wǎng)青海省電力公司電力科學(xué)研究院;青海師范大學(xué);
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(51769012) 甘肅省科技計(jì)劃資助項(xiàng)目(1506RJZA059)
【分類號(hào)】:TV738
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張飛;潘羅平;付婧;;水輪發(fā)電機(jī)組軸心軌跡分解研究[J];南水北調(diào)與水利科技;2011年04期
2 郭鵬程;李輝;袁江霞;羅興,
本文編號(hào):2030947
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/2030947.html
最近更新
教材專著