以CT掃描為基礎(chǔ)的水—巖相互作用三維可視化重建及損傷研究
本文選題:水-巖相互作用 + CT; 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:水-巖相互作用是工程界經(jīng)常遇到的科學(xué)課題,特別是巖體工程災(zāi)害,多數(shù)是因為水-巖相互作用使得巖體內(nèi)部發(fā)生損傷破壞最終導(dǎo)致災(zāi)害發(fā)生,如邊坡工程、水利工程等。為弄清水-巖相互作用過程中砂巖試樣的損傷破壞規(guī)律,首先借助CT掃描技術(shù),結(jié)合三軸加載設(shè)備和自行研發(fā)的滲透水壓力裝置對砂巖試樣進行損傷破壞試驗;通過MIMICS三維可視化重建軟件驗證試驗;通過三維可視化重建得出重建砂巖試樣的體積V和表面積S,再由表面積S間接導(dǎo)出CT掃描斷面面積A,結(jié)合CT掃描試驗所得CT數(shù),從細觀和宏觀角度研究損傷破壞規(guī)律。主要得出以下結(jié)論:(1)先進行砂巖試樣的損傷破壞試驗,對破壞拆樣后的砂巖試樣外表進行不同方位的拍照,然后對破壞后最后一次CT掃描砂巖試樣進行三維重建驗證試驗,得出三維重建與試驗外表出現(xiàn)裂紋一致;且在損傷試驗過程中,通過三維重建可以觀測到砂巖試樣內(nèi)部、及外表都是先出現(xiàn)少量初始微裂紋,接著在初始微裂紋附近集中、爆發(fā)式出現(xiàn)大量裂紋,在局部沒有初始微裂紋的地方也出現(xiàn)少量新的微裂紋。(2)在細觀角度,以相鄰CT掃描區(qū)間砂巖試樣為損傷小組,將CT數(shù)作為細觀損傷變量時,砂巖試樣先經(jīng)過一個線性初始壓密階段,壓密到一定程度后,出現(xiàn)線性損傷破壞跡象;將以三維可視化重建為基礎(chǔ)的斷面面積A作為細觀損傷變量時砂巖試樣先經(jīng)過一個線性初始壓密階段,壓密到一定程度后,出現(xiàn)指數(shù)式的損傷破壞跡象。(3)以三維可視化重建為基礎(chǔ),從宏觀角度以砂巖試樣整體為研究對象,將重建體積V和重建表面積S作為宏觀損傷變量,得出將重建體積V和重建表面積S作為宏觀損傷變量時,砂巖試樣先經(jīng)過初始的線性壓密階段,壓密到一定程度后,出現(xiàn)指數(shù)式損傷破壞跡象。(4)處于水-巖相互作用下的砂巖試樣更容易出現(xiàn)損傷破壞跡象。
[Abstract]:Water-rock interaction is a common scientific subject in engineering field, especially in rock mass engineering. Most of the problems are caused by water-rock interaction, such as slope engineering, water conservancy engineering and so on. In order to deal with the damage and failure rule of sandstone specimen during the process of water-rock interaction, the damage and failure test of sandstone specimen was carried out by means of CT scanning technology, combined with triaxial loading equipment and permeable water pressure device developed by ourselves. The volume V and surface area S of reconstructed sandstone samples were obtained by 3D visualization reconstruction software of MIMICS, then CT scanning sectional area A was indirectly derived from surface area S, and CT number was obtained by combining CT scanning test. The damage failure law is studied from the view of meso-scale and macro-view. The main conclusions are as follows: (1) the damage and failure tests of sandstone samples are carried out first, and the different orientation photographs of the sandstone samples after the destruction are taken, and then the 3D reconstruction verification test is carried out on the last CT scan sandstone samples after the destruction. In the process of damage test, it can be observed that a small amount of initial microcracks appear in the inside and outside of sandstone samples, and then they are concentrated near the initial microcracks in the process of damage test. A large number of cracks appear in explosion, and a small number of new microcracks appear in the places where there are no initial microcracks. In the meso-angle, when the adjacent CT scanning interval sandstone samples are taken as the damage group, the number of CT is taken as the mesoscopic damage variable. The sandstone sample passes through a linear initial compaction stage, after compaction to a certain extent, there are signs of linear damage and failure. When the cross-section area A based on 3D visualization reconstruction is taken as the mesoscopic damage variable, the sandstone specimen goes through a linear initial compaction stage, and then compacted to a certain extent. The appearance of exponential damage signs is based on 3D visual reconstruction. From the macro point of view, the volume V and surface area S of the reconstruction are taken as macroscopic damage variables, and the sandstone sample as a whole is taken as the research object, and the reconstruction volume V and the reconstruction surface area S are taken as macroscopic damage variables. When the reconstruction volume V and the reconstructed surface area S are taken as macroscopic damage variables, the sandstone sample goes through the initial linear compaction stage, and the compression reaches a certain degree. The sandstone samples under the water-rock interaction are more likely to appear the signs of damage and failure.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TV223
【參考文獻】
相關(guān)期刊論文 前10條
1 何延龍;蒲春生;景成;谷瀟雨;劉洪志;崔淑霞;李曉;宋俊強;;基于Hoshen-Kopelman算法的三維多孔介質(zhì)模型中黏土礦物的構(gòu)建[J];石油學(xué)報;2016年08期
2 王路珍;陳占清;孔海陵;倪曉燕;;滲透壓力和初始孔隙度對破碎泥巖變質(zhì)量滲流影響的試驗研究[J];采礦與安全工程學(xué)報;2014年03期
3 劉燕飛;滕奇志;吳曉紅;;巖石三維重建圖像分辨率對孔隙參數(shù)的影響分析[J];計算機與數(shù)字工程;2014年03期
4 耿沖楊;永飛;高瑩;;不同分辨率巖石CT圖像的優(yōu)化處理方法[J];科學(xué)技術(shù)與工程;2014年02期
5 楊勇;楊永明;馬收;鞠楊;郭迎春;于永;;低滲透巖石水力壓力裂紋擴展的CT掃描[J];采礦與安全工程學(xué)報;2013年05期
6 王彥琪;馮增朝;郭紅強;趙東;;基于圖像檢索技術(shù)的巖石單軸壓縮破壞過程CT描述[J];巖土力學(xué);2013年09期
7 于洪丹;陳飛飛;陳衛(wèi)忠;楊建平;曹俊杰;袁克闊;;含裂隙巖石滲流力學(xué)特性研究[J];巖石力學(xué)與工程學(xué)報;2012年S1期
8 馬文國;劉傲雄;;CT掃描技術(shù)對巖石孔隙結(jié)構(gòu)的研究[J];中外能源;2011年07期
9 劉小紅;晏鄂川;朱杰兵;汪斌;;三軸加卸載條件下巖石損傷破壞機理CT試驗分析[J];長江科學(xué)院院報;2010年12期
10 張飛;周海東;姜軍周;;巖石CT斷層序列圖像裂紋三維重建及其損傷特性的研究[J];黃金;2010年07期
相關(guān)會議論文 前2條
1 張強;梁奎;陳志軍;;多視圖立體視覺的巖礦手標(biāo)本三維重建與三維交互設(shè)計[A];第十三屆全國數(shù)學(xué)地質(zhì)與地學(xué)信息學(xué)術(shù)研討會論文集[C];2014年
2 何向;彭增林;周國妍;彭瑞東;;基于CT掃描技術(shù)和數(shù)字圖像相關(guān)法的巖石變形場分析[A];北京力學(xué)會第20屆學(xué)術(shù)年會論文集[C];2014年
相關(guān)博士學(xué)位論文 前1條
1 黃遠智;低滲透巖石非線性滲流機理與變滲透率數(shù)值方法研究[D];清華大學(xué);2006年
相關(guān)碩士學(xué)位論文 前2條
1 高朋杰;節(jié)理巖石透水機理的試驗研究[D];西安科技大學(xué);2008年
2 王夢;基于分形的斷層圖像三維重建算法研究[D];重慶郵電大學(xué);2007年
,本文編號:1945820
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/1945820.html