南水北調(diào)工程采空區(qū)注漿數(shù)值模擬研究
本文關(guān)鍵詞: 注漿 賓漢姆漿液 非穩(wěn)態(tài)k-紊流模型 采空區(qū) 南水北調(diào) 出處:《天津大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:南水北調(diào)中線工程穿越多個煤礦采空區(qū),對工程的安全施工與運(yùn)行造成了嚴(yán)重威脅,因此,對煤礦采空區(qū)進(jìn)行注漿加固處理已成為工程迫切需要解決的問題。注漿技術(shù)已被廣泛地應(yīng)用于地基工程、樁基工程、邊坡工程、隧道工程和煤礦開采,由于注漿具有掩蔽性和巖石地層的復(fù)雜性,數(shù)值模擬技術(shù)比傳統(tǒng)試驗(yàn)方法具有更大的靈活性、經(jīng)濟(jì)性,已經(jīng)廣泛應(yīng)用到注漿工程中。 目前關(guān)于注漿數(shù)值模擬的研究主要是針對單一裂隙或者單個的注漿孔,這與實(shí)際注漿工程中復(fù)雜交錯布置的裂隙情況或者大面積的多孔注漿情況差別較大,且沒有考慮各裂隙或者注漿孔之間流體的相互影響,而且絕大多數(shù)的研究將漿液流態(tài)近似做層流處理,選用滲流控制模型,,這與實(shí)際情況下漿液的紊流狀態(tài)不符。因此,研究三維多序孔紊流非穩(wěn)態(tài)注漿對確保南水北調(diào)渠道長期安全穩(wěn)定運(yùn)行具有重要的理論意義和實(shí)踐價值。 首先,在國內(nèi)外研究的基礎(chǔ)上,基于耦合多種地質(zhì)信息的三維幾何模型,建立了非穩(wěn)態(tài)三維賓漢姆流體k紊流注漿數(shù)學(xué)模型,采用貼體網(wǎng)格劃分技術(shù),建立注漿網(wǎng)格物理模型,根據(jù)注漿工程中地質(zhì)層的地質(zhì)參數(shù),采用不同的孔隙率和阻力系數(shù),對賓漢姆流體漿液在采空區(qū)中的紊流擴(kuò)散進(jìn)行了模擬,實(shí)現(xiàn)了賓漢姆流體漿液的采空區(qū)多孔分序注漿模擬。其次,結(jié)合南水北調(diào)中線工程某煤礦采空區(qū)對賓漢姆流體漿液在采空區(qū)中的紊流擴(kuò)散規(guī)律進(jìn)行了模擬,分析了漿液擴(kuò)散、滲透的變化規(guī)律,并將模擬結(jié)果與理論分析結(jié)果、實(shí)際工程數(shù)據(jù)進(jìn)行對比,驗(yàn)證了模型的可靠性。最后,對0.5Mpa、1.0Mpa、1.5Mpa三種注漿壓力條件下的注漿效果進(jìn)行了對比分析。模擬結(jié)果表明: (1)由于重力和注漿壓力的雙重作用,漿液在采空區(qū)中的擴(kuò)散分布呈現(xiàn)倒漏斗形狀; (2)I、II序孔注漿時,漿液的擴(kuò)散半徑隨著時間的增加而逐漸變大,但其變化率隨著時間的增加而逐漸減少,最后趨于零; (3)I、II序孔注漿時,漿液的充填率隨著時間的增加而逐漸變大,但其變化率隨著時間的增加而逐漸減少,最后趨于零。
[Abstract]:The project of the middle route of the South-to-North Water transfer Project passes through many coal mine goaf areas, which poses a serious threat to the safe construction and operation of the project, so, Grouting technology has been widely used in foundation engineering, pile foundation engineering, slope engineering, tunnel engineering and coal mining. Due to the masking property of grouting and the complexity of lithostratigraphy, numerical simulation technology is more flexible and economical than the traditional test method, so it has been widely used in grouting engineering. At present, the research on numerical simulation of grouting is mainly aimed at a single fissure or a single grouting hole, which is quite different from the situation of complex interlaced cracks or large areas of porous grouting in actual grouting engineering. Moreover, the interaction of fluid between different cracks or grouting holes is not considered, and most of the studies make the slurry flow state approximate laminar flow treatment and select the seepage control model, which is not consistent with the actual turbulent state of the slurry. It is of great theoretical significance and practical value to study the unsteady grouting of three-dimensional multi-sequence hole turbulent flow in order to ensure the long-term safe and stable operation of the channel of South-to-North Water transfer. First of all, on the basis of domestic and foreign research, based on the 3D geometric model coupled with various geological information, a mathematical model of unsteady 3D Bingham fluid k turbulent grouting is established, and the body-fitted meshing technique is adopted. Based on the geological parameters of geological layer in grouting engineering, the turbulent diffusion of Bingham fluid slurry in goaf is simulated by using different porosity and resistance coefficient. The simulation of Bingham fluid slurry injection in goaf is realized. Secondly, the turbulent diffusion law of Bingham fluid slurry in goaf is simulated by combining with the goaf of a coal mine in the middle route of South-to-North Water transfer Project, and the slurry diffusion is analyzed. The variation law of infiltration is compared with the theoretical analysis and the actual engineering data to verify the reliability of the model. Finally, the grouting effect under three grouting pressures of 0.5Mpa-1.0Mpa-1.5Mpa is compared and analyzed. The simulation results show that:. (1) due to the double action of gravity and grouting pressure, the distribution of slurry in goaf is in the shape of inverted funnel; The diffusion radius of the slurry increases with the increase of time, but the rate of change decreases with the increase of time, and finally tends to zero. The filling rate of the slurry increases with the increase of time, but the change rate decreases with the increase of time, and tends to be zero.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TV68;TV543
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林青;;巖溶地區(qū)土洞地基灌漿處理過程研究[J];地質(zhì)與勘探;2012年01期
2 張恒;陳壽根;;高壓地下水封堵注漿計算機(jī)模擬技術(shù)研究[J];吉林水利;2008年10期
3 李興尚;許家林;朱衛(wèi)兵;莊德林;;垮落矸石注漿充填體壓實(shí)特性的顆粒流模擬[J];煤炭學(xué)報;2008年04期
4 羅平平;李志平;范波;張玉軍;;傾斜單裂隙賓漢漿液流動模型理論研究[J];山東科技大學(xué)學(xué)報(自然科學(xué)版);2010年01期
5 楊米加,賀永年,陳明雄;裂隙巖體網(wǎng)絡(luò)注漿滲流規(guī)律[J];水利學(xué)報;2001年07期
6 孫斌堂;凌賢長;凌晨;朱國榮;;滲透注漿漿液擴(kuò)散與注漿壓力分布數(shù)值模擬[J];水利學(xué)報;2007年11期
7 王曉玲;段琦琦;佟大威;安娟;;長距離無壓引水隧洞水氣兩相流數(shù)值模擬[J];水利學(xué)報;2009年05期
8 李治國;隧道巖溶處理技術(shù)[J];鐵道工程學(xué)報;2002年04期
9 閆常赫;向可明;邱延峻;;基于不同擴(kuò)散方式的路基滲透注漿模擬[J];鐵道建筑;2008年11期
10 王曉玲;張愛麗;陳華鴻;孫蕊蕊;;三維潰壩洪水在復(fù)雜淹沒區(qū)域演進(jìn)的數(shù)值模擬[J];水利學(xué)報;2012年09期
相關(guān)博士學(xué)位論文 前2條
1 黃戡;裂隙巖體中隧道注漿加固理論研究及工程應(yīng)用[D];中南大學(xué);2011年
2 王檔良;多孔介質(zhì)動水化學(xué)注漿機(jī)理研究[D];中國礦業(yè)大學(xué);2011年
本文編號:1496374
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/1496374.html