基于EMA法的洪水頻率分布參數(shù)估計(jì)方法研究
本文關(guān)鍵詞: 洪水頻率分析 參數(shù)估計(jì) 簡(jiǎn)單和非簡(jiǎn)單樣本 期望矩法 部分和高階線性矩法 出處:《西北農(nóng)林科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:受全球氣候變化和人類活動(dòng)加劇的影響,洪澇災(zāi)害帶來(lái)的損失越來(lái)越嚴(yán)重。洪水設(shè)計(jì)值的估計(jì)精度直接關(guān)系到工程的投資和安全,因而設(shè)計(jì)洪水的計(jì)算精度研究成為洪水計(jì)算的重要問題。洪水頻率分析是推求給定設(shè)計(jì)頻率(或重現(xiàn)期)洪水設(shè)計(jì)值的關(guān)鍵技術(shù),合理的洪水設(shè)計(jì)值可為洪水管理、大壩溢洪道的設(shè)計(jì)和水利工程規(guī)劃決策提供依據(jù)。 本文綜述了近年來(lái)國(guó)內(nèi)外水文頻率分析的研究進(jìn)展,探索了常用和新型參數(shù)估計(jì)方法在簡(jiǎn)單和非簡(jiǎn)單樣本中的應(yīng)用。本文主要的研究?jī)?nèi)容如下。 (1)選定P-III型分布線型,研究新型參數(shù)估計(jì)方法——期望矩法(ExpectedMoments Algorithm,簡(jiǎn)稱EMA)和常用參估方法(矩法、權(quán)函數(shù)法、概率權(quán)重矩法和線性矩法)在非簡(jiǎn)單樣本中的應(yīng)用。將其運(yùn)用到陜西省10個(gè)水文測(cè)站的年最大洪峰流量(加入歷史洪水資料)中,并進(jìn)行擬合結(jié)果分析和評(píng)價(jià)。 (2)選定廣義極值分布(Generalized Extreme Value Distribution,簡(jiǎn)稱GEV)線型,研究新型參估方法(部分線性矩法和高階線性矩法)在簡(jiǎn)單樣本中的應(yīng)用,并進(jìn)行研究區(qū)年最大洪峰流量系列的實(shí)例應(yīng)用和分析。 (3)采用蒙特卡洛試驗(yàn)進(jìn)行參數(shù)估計(jì)方法的統(tǒng)計(jì)性能研究。以定量和直觀圖形評(píng)判標(biāo)準(zhǔn)為評(píng)判依據(jù),假設(shè)總體統(tǒng)計(jì)參數(shù),構(gòu)建簡(jiǎn)單和非簡(jiǎn)單樣本(門限模型和個(gè)數(shù)模型),借助Matlab2009a計(jì)算各組設(shè)計(jì)方案的結(jié)果,最后分析和評(píng)判相應(yīng)參數(shù)估計(jì)方法的優(yōu)劣。 通過上述研究,可得以下結(jié)論。 (1)實(shí)例應(yīng)用中,非簡(jiǎn)單樣本中各參數(shù)估計(jì)方法的擬合效果優(yōu)劣各異。其中EMA法對(duì)長(zhǎng)歷史洪水資料系列的擬合效果較佳,概率權(quán)重矩法和線性矩法的結(jié)果接近,且歷史洪水資料的長(zhǎng)度對(duì)其擬合效果影響不大,而權(quán)函數(shù)法優(yōu)于矩法。簡(jiǎn)單樣本中部分線性矩法和高階線性矩法均能有效改善研究洪峰系列較大流量的擬合效果,可為外延的大重現(xiàn)期設(shè)計(jì)值提供有利依據(jù)。 (2)蒙特卡洛試驗(yàn)中,在各刪失水平下的部分線性矩法和各高階線性矩法均具有良好的統(tǒng)計(jì)性能,且隨著刪失水平和階數(shù)的增長(zhǎng),參數(shù)估計(jì)值和設(shè)計(jì)值的估計(jì)偏差隨之降低。但部分線性矩法和高階線性矩法的設(shè)計(jì)值估計(jì)偏差隨著重現(xiàn)期的增大而相應(yīng)變大。而非簡(jiǎn)單樣本的模擬結(jié)果中,門限值模型和個(gè)數(shù)模型結(jié)果相差不大,實(shí)測(cè)資料和歷史洪水資料越長(zhǎng),各參數(shù)估計(jì)方法的統(tǒng)計(jì)性能均有所改善,其中期望矩法的效果最為顯著,概率權(quán)重矩法和線性矩法較為穩(wěn)定,,權(quán)函數(shù)法和矩法次之。
[Abstract]:Due to the influence of global climate change and the intensification of human activities, the losses caused by flood and waterlogging are becoming more and more serious. The accuracy of flood design value estimation is directly related to the investment and safety of the project. Therefore, the calculation accuracy of design flood becomes an important problem in flood calculation, and flood frequency analysis is the key technology to calculate the design value of flood given design frequency (or recurrence period). Reasonable flood design value can provide basis for flood management, dam spillway design and water conservancy project planning decision. This paper reviews the recent advances in hydrologic frequency analysis at home and abroad, and explores the application of common and new parameter estimation methods in simple and non-simple samples. The main contents of this paper are as follows. 1) the P-III type distribution line is selected to study the new parameter estimation method, the expected moments method, and the expected moments Algorithm. EMA) and commonly used parameter estimation methods (moment method, weight function method). The application of probabilistic weighted moment method and linear moment method in non-simple samples is applied to the annual maximum Hong Feng discharge (including historical flood data) of 10 hydrological stations in Shaanxi Province. The fitting results were analyzed and evaluated. 2) selecting generalized Extreme Value distribution. The application of new parameter estimation methods (partial linear moment method and high order linear moment method) in simple samples is studied, and the application and analysis of the annual maximum Hong Feng flow series in the study area are carried out. The statistical performance of the parameter estimation method is studied by Monte Carlo test. Based on the quantitative and visual graph evaluation criteria, the statistical parameters of the population are assumed. The simple and non-simple samples (threshold model and number model) were constructed, and the results of each group design scheme were calculated by Matlab2009a. Finally, the advantages and disadvantages of the corresponding parameter estimation methods were analyzed and evaluated. Through the above research, we can draw a conclusion. In the application of the example, the fitting effect of each parameter estimation method in the non-simple sample is different, among which the EMA method is better for the long history flood data series. The results of probabilistic weighted moment method and linear moment method are close, and the length of historical flood data has little effect on the fitting effect. But the weight function method is superior to the moment method. The partial linear moment method and the high order linear moment method in the simple sample can effectively improve the fitting effect of studying Hong Feng series large flow rate, and can provide a favorable basis for the design value of the extension of large recurrence period. 2) in Monte Carlo test, the partial linear moment method and the higher order linear moment method have good statistical performance under each censored level, and with the increase of deletion level and order. The deviation between the parameter estimation and the design value decreases, but the partial linear moment method and the higher order linear moment method estimate the deviation of the design value with the increase of the recurrence period, but not in the simulation results of simple samples. The results of the threshold model and the number model are not different. The longer the measured data and the historical flood data, the better the statistical performance of each parameter estimation method, among which the expected moment method is the most effective. The probabilistic weight moment method and linear moment method are more stable than the weight function method and moment method.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P333.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 段忠東,周道成;極值概率分布參數(shù)估計(jì)方法的比較研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2004年12期
2 傅衍;雜交參數(shù)估計(jì)方法的研究[J];遺傳;1997年S1期
3 吳達(dá),吳柏林;模糊回歸參數(shù)估計(jì)方法及應(yīng)用于景氣對(duì)策信號(hào)分析[J];系統(tǒng)工程理論與實(shí)踐;2001年11期
4 劉義;王國(guó)玉;柯宏發(fā);張哲峰;;一種應(yīng)用于外場(chǎng)實(shí)驗(yàn)數(shù)據(jù)處理的非概率參數(shù)估計(jì)方法[J];信號(hào)處理;2009年01期
5 高云柱;確定基尼系數(shù)的參數(shù)估計(jì)方法[J];松遼學(xué)刊(自然科學(xué)版);1999年04期
6 萬(wàn)玉成,盛昭瀚;廣義加權(quán)函數(shù)平均組合預(yù)測(cè)模型參數(shù)估計(jì)方法(英文)[J];Journal of Southeast University(English Edition);2004年01期
7 陳玉東;施頌椒;翁正新;;關(guān)于一類具有有界不確定性數(shù)據(jù)的參數(shù)估計(jì)方法的誤差分析[J];應(yīng)用數(shù)學(xué)與計(jì)算數(shù)學(xué)學(xué)報(bào);2007年02期
8 高飛;阿氏公式參數(shù)估計(jì)方法的分析與改進(jìn)[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1993年02期
9 黃心曄,施嶸,富煜清,陸佶人;音素基隨機(jī)軌跡模型的理論機(jī)制和參數(shù)估計(jì)方法[J];聲學(xué)技術(shù);2000年02期
10 冉慶鵬;;平行數(shù)據(jù)模型的參數(shù)估計(jì)方法及應(yīng)用[J];科技信息;2012年09期
相關(guān)會(huì)議論文 前2條
1 肖懷鐵;李艷;付強(qiáng);;低信噪比下快速多目標(biāo)分辨與參數(shù)估計(jì)方法研究[A];第十二屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2005)論文集[C];2005年
2 韓英華;汪晉寬;宋昕;;分布式信源參數(shù)估計(jì)方法的研究現(xiàn)狀[A];第七屆青年學(xué)術(shù)會(huì)議論文集[C];2005年
相關(guān)碩士學(xué)位論文 前10條
1 李雪梅;IRT框架下的多級(jí)評(píng)分模型的參數(shù)估計(jì)方法及其應(yīng)用[D];東北師范大學(xué);2007年
2 張繼超;邏輯斯蒂克模型中項(xiàng)目參數(shù)估計(jì)方法的研究[D];東北師范大學(xué);2013年
3 劉文忠;近場(chǎng)源多維參數(shù)估計(jì)方法研究[D];西安電子科技大學(xué);2005年
4 張喜良;拓展的隱馬氏模型和基于遺傳算法的參數(shù)估計(jì)方法[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
5 張國(guó)紅;基于項(xiàng)目反應(yīng)理論模型能力參數(shù)估計(jì)方法的研究[D];東北師范大學(xué);2013年
6 宋揚(yáng);空間錐體目標(biāo)的成像與參數(shù)估計(jì)方法研究[D];西安電子科技大學(xué);2014年
7 石芳;偏差補(bǔ)償最小二乘參數(shù)估計(jì)方法研究[D];長(zhǎng)沙理工大學(xué);2011年
8 王志巍;移動(dòng)終端定位參數(shù)估計(jì)方法研究[D];北京交通大學(xué);2009年
9 曹雪;正弦非線性切普鍵控技術(shù)及參數(shù)估計(jì)方法[D];哈爾濱工程大學(xué);2013年
10 莫t涇;供水管網(wǎng)實(shí)驗(yàn)?zāi)M及管網(wǎng)參數(shù)估計(jì)方法初探[D];西南交通大學(xué);2014年
本文編號(hào):1467136
本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/1467136.html