天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 施工技術(shù)論文 >

基于模糊神經(jīng)網(wǎng)絡(luò)的電梯群控系統(tǒng)的研究

發(fā)布時(shí)間:2018-08-02 13:08
【摘要】:隨著社會(huì)經(jīng)濟(jì)的發(fā)展,高層建筑日益增多,電梯群在高層建筑以及智能大廈中所起的作用越來越大,電梯群控系統(tǒng)已成為國內(nèi)外研究的熱點(diǎn)。本文對(duì)電梯群控系統(tǒng)的研究主要包括兩方面內(nèi)容:電梯交通模式識(shí)別和調(diào)度算法的研究,并且在研究中引入了智能控制方法。 首先,本文闡述了論文的課題背景以及研究的目的和意義,回顧了電梯群控的發(fā)展與研究現(xiàn)狀。 其次,本文研究了電梯群控的基本特性,主要有不確定性、擾動(dòng)性、非線性和多目標(biāo)性,并且給出了交通流的基本概念以及檢測交通流的方法。研究了電梯群控系統(tǒng)的性能評(píng)價(jià)指標(biāo),主要包括時(shí)間評(píng)價(jià)指標(biāo)和能耗評(píng)價(jià)指標(biāo)。研究了電梯群控系統(tǒng)的構(gòu)成。 然后,本文研究了應(yīng)用于電梯群控系統(tǒng)的Mamdani型模糊神經(jīng)網(wǎng)絡(luò),模糊神經(jīng)網(wǎng)絡(luò)融合了模糊邏輯和人工神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn),易于表達(dá)知識(shí)并且有自學(xué)習(xí)能力。文中給出的Mamdani型模糊神經(jīng)網(wǎng)絡(luò)為交通模式識(shí)別與優(yōu)化派梯提供了理論基礎(chǔ)。 根據(jù)給出的模糊神經(jīng)網(wǎng)絡(luò)對(duì)電梯交通流進(jìn)行模式識(shí)別。本文研究了六種典型的交通模式,詳述了各個(gè)交通模式的特征。采用三階段混合學(xué)習(xí)算法對(duì)模糊神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí),并結(jié)合實(shí)際交通特點(diǎn)采用兩個(gè)模糊神經(jīng)網(wǎng)絡(luò)對(duì)交通流分兩步進(jìn)行識(shí)別,先用網(wǎng)絡(luò)Ⅰ識(shí)別出上行高峰、下行高峰、空閑交通以及層間交通的比例,若層間比例較小時(shí)不需要進(jìn)行網(wǎng)絡(luò)Ⅱ的模式識(shí)別,若層間交通比例較大時(shí),運(yùn)用網(wǎng)絡(luò)Ⅱ識(shí)別出兩路、四路以及隨機(jī)層間交通模式的比例。用樣本訓(xùn)練模糊神經(jīng)網(wǎng)絡(luò),并用實(shí)際的交通流對(duì)模糊神經(jīng)網(wǎng)絡(luò)進(jìn)行測試。 最后,研究了電梯群控調(diào)度算法,電梯調(diào)度是一個(gè)典型的多目標(biāo)規(guī)劃問題。本文采用前文提出的Mamdani型模糊神經(jīng)網(wǎng)絡(luò)對(duì)電梯群進(jìn)行優(yōu)化控制,控制目標(biāo)選擇為平均候梯時(shí)間、平均乘梯時(shí)間、能耗。根據(jù)專家規(guī)則確定了進(jìn)行優(yōu)化派梯的模糊神經(jīng)網(wǎng)絡(luò),采用誤差反向傳播算法對(duì)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)。通過對(duì)實(shí)際呼梯信號(hào)的調(diào)度,進(jìn)一步驗(yàn)證了算法的有效性。
[Abstract]:With the development of social economy and the increasing number of high-rise buildings, elevator group plays a more and more important role in high-rise buildings and intelligent buildings. The elevator group control system has become a hot spot at home and abroad. In this paper, the research of elevator group control system mainly includes two aspects: elevator traffic pattern recognition and scheduling algorithm, and the intelligent control method is introduced in the research. First of all, this paper describes the background of the thesis, the purpose and significance of the research, and reviews the development and research status of elevator group control. Secondly, this paper studies the basic characteristics of elevator group control, including uncertainty, disturbance, nonlinearity and multi-objective, and gives the basic concept of traffic flow and the method of detecting traffic flow. The performance evaluation index of elevator group control system is studied, including time evaluation index and energy consumption evaluation index. The structure of elevator group control system is studied. Then, this paper studies the Mamdani fuzzy neural network used in elevator group control system. Fuzzy neural network combines the advantages of fuzzy logic and artificial neural network, and it is easy to express knowledge and has the ability of self-learning. The Mamdani fuzzy neural network provided in this paper provides a theoretical basis for traffic pattern recognition and optimization of ladders. According to the given fuzzy neural network, the elevator traffic flow pattern recognition is carried out. In this paper, six typical traffic modes are studied, and the characteristics of each traffic mode are described in detail. The three-stage hybrid learning algorithm is used to study the fuzzy neural network, and two fuzzy neural networks are used to identify the traffic flow in two steps according to the actual traffic characteristics. First, the uplink peak and the downlink peak are identified by network 鈪,

本文編號(hào):2159535

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/sgjslw/2159535.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶94e8f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com