三種不同冷凝熱回收方式下空調(diào)系統(tǒng)性能研究
發(fā)布時(shí)間:2018-05-16 22:08
本文選題:冷凝熱回收 + 熱泵空調(diào)器 ; 參考:《天津商業(yè)大學(xué)》2013年碩士論文
【摘要】:本文著眼于保護(hù)環(huán)境與節(jié)約能源,對(duì)常規(guī)空調(diào)進(jìn)行冷凝熱回收研究,冷凝熱回收系統(tǒng)最大特點(diǎn)是能夠在夏季向室內(nèi)供冷的同時(shí)回收冷凝熱制取生活熱水,這樣不僅緩解了夏季熱泵空調(diào)器在制冷時(shí)對(duì)室外環(huán)境的熱污染問(wèn)題和能源的浪費(fèi)問(wèn)題,而且可以節(jié)約大量的加熱生活熱水的一次能源。冷凝熱回收系統(tǒng)有多種形式,本文主要針對(duì)循環(huán)加熱式冷凝熱回收系統(tǒng)、靜態(tài)加熱式冷凝熱回收系統(tǒng)和相變蓄熱式冷凝熱回收系統(tǒng)進(jìn)行冷凝熱回收的研究。綜合空氣源熱泵空調(diào)器、空氣源熱泵熱水器以及相變儲(chǔ)能技術(shù)搭建了空氣源熱泵多功能實(shí)驗(yàn)臺(tái),該實(shí)驗(yàn)臺(tái)能實(shí)現(xiàn)對(duì)循環(huán)加熱式冷凝熱回收、靜態(tài)加熱式冷凝熱回收和相變蓄熱式冷凝熱回收做單獨(dú)的性能研究。每種冷凝熱回收形式又可運(yùn)行單獨(dú)制冷模式、單獨(dú)制熱模式、單獨(dú)制熱水模式以及冷凝熱回收模式。冷凝熱回收模式按熱回收能力又可分為全部冷凝熱回收、部分冷凝熱回收和復(fù)合冷凝熱回收。 實(shí)驗(yàn)對(duì)不同類型冷凝熱回收系統(tǒng)在夏季工況運(yùn)行時(shí)的特性進(jìn)行了實(shí)驗(yàn)研究,分析并比較了各系統(tǒng)制冷能效比、制熱性能系數(shù)以及冷凝熱回收模式下的綜合性能系數(shù)和熱回收率等。通過(guò)實(shí)驗(yàn)研究得到如下結(jié)論: 1)冷凝熱回收系統(tǒng)在運(yùn)行單獨(dú)制冷模式時(shí),制冷能效比EER為2.4,在部分冷凝熱回收模式下,循環(huán)加熱式冷凝熱回收平均綜合能效系數(shù)為5.1,是單獨(dú)制冷時(shí)的2.12倍;靜態(tài)加熱式冷凝熱回收平均綜合性能系數(shù)為4.9,是單獨(dú)制冷時(shí)的2.04倍;相變蓄熱式冷凝熱回收平均綜合能效系數(shù)為2.9,為單獨(dú)制冷時(shí)的1.2倍。 2)當(dāng)運(yùn)行部分冷凝熱回收模式時(shí),循環(huán)加熱式冷凝熱回收平均熱回收率為42%,在運(yùn)行過(guò)程中減少了系統(tǒng)42%的冷凝熱排放量;靜態(tài)加熱式冷凝熱回收平均熱回收率為28%;相變蓄熱式冷凝熱回收平均熱回收率為15%。 3)當(dāng)運(yùn)行部分冷凝熱回收模式時(shí),循環(huán)加熱式冷凝熱回收需要120分鐘將200L熱水從20℃加熱到50℃;靜態(tài)加熱式冷凝熱回收需要155分鐘將200L熱水從20℃加熱到50℃。 對(duì)冷凝熱回收裝置內(nèi)蓄熱介質(zhì)換熱特性建立數(shù)學(xué)和物理模型,開(kāi)展溫度及速度的變化及分布情況的模擬研究,通過(guò)對(duì)三種不同系統(tǒng)形式的冷凝熱回收裝置蓄熱介質(zhì)隨加熱時(shí)間的變化進(jìn)行模擬研究得到如下結(jié)論: 1)在蓄熱過(guò)程中,循環(huán)加熱式冷凝熱回收的全部冷凝熱回收模式時(shí),蓄熱水箱水溫有2-3℃的溫度分層出現(xiàn);靜態(tài)加熱式冷凝熱回收的全部冷凝熱回收模式時(shí),蓄熱水箱水溫有3-4℃的溫度分層;相變蓄熱冷凝熱回收的部分冷凝熱回收模式時(shí),相變箱上部溫度較高下部較低,當(dāng)運(yùn)行4小時(shí)后相變箱上層溫度已經(jīng)達(dá)到58℃時(shí),下層石蠟溫度僅為42℃。 2)模擬將200L20℃的水加熱到50℃時(shí),循環(huán)加熱式冷凝熱回收需要加熱60分鐘,實(shí)驗(yàn)值為60分鐘;靜態(tài)加熱式冷凝熱回收需要80分鐘,實(shí)驗(yàn)值為80分鐘;對(duì)石蠟蓄熱過(guò)程進(jìn)行模擬,石蠟的融化過(guò)程與實(shí)驗(yàn)所觀察相同,即靠近盤管的部分先融化相變,接著是上層石蠟部分,模擬4小時(shí)后當(dāng)上層石蠟全部相變后,下部石蠟溫度僅為42.5℃;實(shí)驗(yàn)加熱4小時(shí),上層溫度為72℃,,下部溫度僅為42.3℃。
[Abstract]:The invention aims at protecting the environment and saving energy , and carrying out condensation heat recovery research on a conventional air conditioner .
In this paper , the characteristics of different types of condensation heat recovery system in summer working condition are studied , and the performance ratio , coefficient of thermal performance and the recovery of heat recovery are compared . The results are as follows :
1 ) When the condensing heat recovery system is operating in a single cooling mode , the energy efficiency ratio of refrigeration is 2.4 , and in part of the condensation heat recovery mode , the average comprehensive energy efficiency coefficient of the circulating heating type condensing heat recovery system is 5.1 , which is 2.12 times of the individual refrigeration ;
The average comprehensive energy coefficient of the static heating type condensation heat recovery is 4.9 , which is 2.04 times that of the individual refrigeration .
The average comprehensive energy efficiency coefficient of phase change regenerative condensing heat recovery is 2.9 , which is 1.2 times of the individual refrigeration .
2 ) When operating part of the condensing heat recovery mode , the average recovery of heat recovery of the circulating heating type condensation heat recovery is 42 % , and the condensing heat discharge amount of the system is reduced by 42 % during operation ;
The average recovery of heat recovery was 28 % .
The average recovery of heat recovery for phase change regenerative condensation heat recovery is 15 % .
3 ) when the operating part of the condensing heat recovery mode , the circulating heating type condensation heat recovery needs 120 minutes to heat the 200L hot water from 20 DEG C to 50 DEG C ;
The static heating type condensation heat recovery requires 155 minutes to heat 200 L of hot water from 20.degree . C . to 50.degree . C .
The mathematical and physical models are established for the heat transfer characteristics of the heat storage medium in the condensation heat recovery device , and the simulation research on the change and distribution of the temperature and speed is carried out , and the simulation research on the heat storage medium of the condensing heat recovery device in the form of three different systems is carried out with the change of the heating time to obtain the following conclusions :
1 ) during the heat accumulation process , when all the condensing heat recovery modes of the circulating heating type condensation heat recovery occur , the temperature of the water temperature of the heat storage tank is stratified by the temperature of 2 - 3 DEG C ;
when all the condensing heat recovery modes of the static heating type condensation heat recovery , the water temperature of the heat storage tank is layered at a temperature of 3 - 4 DEG C ;
The temperature of the upper part of the phase change box is lower than the upper part of the phase change box when the partial condensation heat recovery mode of the phase change heat storage condensation heat recovery is low , and when the temperature of the upper layer of the phase change box reaches 58 DEG C after 4 hours of operation , the temperature of the lower layer paraffin is only 42 DEG C .
2 ) heating the water at 200L20 & deg ; C to 50 & deg ; C , heating for 60 minutes under cyclic heating type condensation heat recovery , and testing the experimental value for 60 minutes ;
the static heating type condensation heat recovery needs 80 minutes , and the experimental value is 80 minutes ;
The paraffin wax heat accumulation process was simulated . The melting process of paraffin was the same as that observed in the experiment , that is , the part of the coil close to the coil was melted first , then it was the upper paraffin section . After 4 hours of simulation , the temperature of the lower paraffin was only 42.5 鈩
本文編號(hào):1898608
本文鏈接:http://www.sikaile.net/kejilunwen/sgjslw/1898608.html
最近更新
教材專著