蒸發(fā)式風(fēng)冷冷水機(jī)組性能分析與優(yōu)化
本文關(guān)鍵詞:蒸發(fā)式風(fēng)冷冷水機(jī)組性能分析與優(yōu)化 出處:《湖南科技大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 直接蒸發(fā)冷卻 風(fēng)冷冷水機(jī)組 蒸發(fā)式風(fēng)冷冷水機(jī)組 SEER 節(jié)能
【摘要】:建筑能耗在國家總能耗中占有重要比重,減少建筑能耗是實(shí)現(xiàn)我國能源環(huán)境可持續(xù)發(fā)展的必然要求?照{(diào)能耗是建筑能耗的主體,降低空調(diào)能耗,對(duì)促進(jìn)建筑節(jié)能減排具有重要意義。風(fēng)冷冷水機(jī)組具有結(jié)構(gòu)緊湊、系統(tǒng)簡單、安裝方便及投資費(fèi)用低等突出優(yōu)點(diǎn),在中小型建筑中得到了較廣泛的應(yīng)用。然而,與水冷式冷水機(jī)組相比,風(fēng)冷式冷水機(jī)組能效較低,不利于建筑節(jié)能。因此,本文試圖采用一種簡單、可靠、有效的方法,來提高風(fēng)冷冷水機(jī)組的能效,促進(jìn)風(fēng)冷冷水機(jī)組的運(yùn)行節(jié)能。 蒸發(fā)式風(fēng)冷冷水機(jī)組是將直接蒸發(fā)冷卻器與風(fēng)冷冷水機(jī)組相結(jié)合,通過直接蒸發(fā)冷卻器降低冷凝器進(jìn)風(fēng)溫度,從而降低機(jī)組冷凝溫度,提高機(jī)組能效。本文在建立直接蒸發(fā)冷卻器和風(fēng)冷冷水機(jī)組數(shù)學(xué)模型基礎(chǔ)上,通過MATLAB計(jì)算機(jī)軟件編程,仿真分析了蒸發(fā)式風(fēng)冷冷水機(jī)組的性能的影響因素:氣候條件、迎面風(fēng)速及填料厚度。為了更加準(zhǔn)確合理地評(píng)價(jià)蒸發(fā)式風(fēng)冷冷水機(jī)組在各地的節(jié)能潛力,本文提出采用機(jī)組季節(jié)能效比增加作為評(píng)價(jià)指標(biāo),并以該指標(biāo)作為優(yōu)化目標(biāo)。優(yōu)化了機(jī)組填料厚度,給出了蒸發(fā)式風(fēng)冷冷水機(jī)組在我國各主要城市使用的最佳填料厚度。 為進(jìn)一步考慮機(jī)組負(fù)荷隨建筑負(fù)荷變化,同時(shí)考慮機(jī)組在不同冷凝控制策略時(shí)的節(jié)能潛力,本文還建立了蒸發(fā)式風(fēng)冷冷水機(jī)組的詳細(xì)分析模型,利用該模型,分析了機(jī)組在不同負(fù)荷率下的節(jié)能潛力大小。為進(jìn)一步幫助工程設(shè)計(jì)人員分析設(shè)計(jì)蒸發(fā)式風(fēng)冷冷水機(jī)組,在理論研究基礎(chǔ)上,本文開發(fā)了機(jī)組計(jì)算軟件包。通過本文的研究,可以得出以下有益結(jié)論: (1)在給定的氣候條件和迎面風(fēng)速下,存在一個(gè)最佳的填料厚度,使得機(jī)組性能最佳。針對(duì)我國的氣候條件,最佳填料厚度的取值在80~140mm之間。 (2)蒸發(fā)式風(fēng)冷冷水機(jī)組性能受負(fù)荷率和冷凝控制策略的影響較大,比較分析結(jié)果表明:變冷凝溫度控制比定冷凝溫度控制具有更高的節(jié)能潛力。 (3)優(yōu)化的蒸發(fā)式風(fēng)冷冷水機(jī)組較傳統(tǒng)風(fēng)冷式冷水機(jī)組具有較高的節(jié)能潛力,有較大的推廣應(yīng)用前景,尤其是在我國西部和北部地區(qū),,節(jié)能潛力更大。
[Abstract]:Building energy consumption occupies an important proportion in the national total energy consumption. Reducing building energy consumption is the inevitable requirement to realize the sustainable development of energy environment in China. Air conditioning energy consumption is the main part of building energy consumption, reducing air conditioning energy consumption. The air-cooled chillers are widely used in small and medium-sized buildings because of their advantages such as compact structure, simple system, easy installation and low investment cost. Compared with water-cooled chillers, air-cooled chillers have lower energy efficiency and are not conducive to building energy saving. Therefore, this paper attempts to adopt a simple, reliable and effective method to improve the energy efficiency of air-cooled chillers. Promote the operation of air-cooled chillers energy-saving. Evaporative air-cooled chillers combine direct evaporative coolers with air-cooled chillers to reduce the inlet air temperature of the condenser and thus to reduce the condensing temperature through the direct evaporative cooler. On the basis of establishing mathematical model of direct evaporative cooler and air-cooled chiller, this paper is programmed by MATLAB computer software. The factors affecting the performance of evaporative air-cooled chillers, such as climatic conditions, direct wind speed and packing thickness, are simulated and analyzed. In order to evaluate the energy saving potential of evaporative air-cooled chillers in different places more accurately and reasonably. In this paper, the increase of unit seasonal energy efficiency ratio is used as the evaluation index, and this index is taken as the optimization target, and the packing thickness of the unit is optimized. The optimum packing thickness of evaporative air-cooled chillers used in major cities of China is given. In order to further consider the variation of unit load with building load and the energy saving potential of units under different condensing control strategies, a detailed analysis model of evaporative air-cooled chillers is established and used in this paper. The energy saving potential of the unit under different load rates is analyzed. In order to further help the designers to analyze and design evaporative air-cooled chillers, based on the theoretical research. In this paper, the software package of unit calculation is developed. Through the research in this paper, we can draw the following useful conclusions: 1) under the given climatic conditions and the direct wind speed, there is an optimum packing thickness, which makes the performance of the unit optimal, aiming at the climate conditions of our country. The optimum packing thickness is between 80 mm and 140 mm. 2) the performance of evaporative air-cooled chillers is greatly affected by the load rate and condensing control strategy. The results of comparison and analysis show that the variable condensing temperature control has a higher energy saving potential than the fixed condensing temperature control. 3) the optimized evaporative air-cooled chillers have higher energy saving potential than the traditional air-cooled chillers, and have a great prospect of popularization and application, especially in the western and northern regions of China.
【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU831.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 路廣遙;王經(jīng);孫中寧;;換熱器熱力學(xué)計(jì)算中平均溫差計(jì)算方法[J];核動(dòng)力工程;2008年01期
2 孫中寧,彭敏俊,杜澤,黃渭堂;換熱器熱工計(jì)算中傳熱溫差計(jì)算方法的一致性問題[J];核動(dòng)力工程;1997年04期
3 吳小舟;趙加寧;;U型翅片管換熱器傳熱單元數(shù)計(jì)算式[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2012年04期
4 ;Experimental Study of Effect of Air Duct Structures on Heat Dissipation of Heating-Only Fan Coil[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S1期
5 熊軍,劉澤華,寧順清;再循環(huán)蒸發(fā)冷卻技術(shù)及其在空調(diào)行業(yè)的應(yīng)用探討[J];節(jié)能技術(shù);2005年01期
6 熊軍,劉澤華,寧順清;再循環(huán)蒸發(fā)冷卻技術(shù)及其應(yīng)用[J];建筑熱能通風(fēng)空調(diào);2005年04期
7 蔣毅;張小松;;直接蒸發(fā)冷卻及其用于風(fēng)冷冷水機(jī)組的研究[J];建筑熱能通風(fēng)空調(diào);2006年02期
8 宣永梅,黃翔,武俊梅;直接蒸發(fā)冷卻式空調(diào)機(jī)用填料的性能評(píng)價(jià)[J];潔凈與空調(diào)技術(shù);2001年01期
9 武俊梅,黃翔,陶文銓;單元式直接蒸發(fā)冷卻空調(diào)機(jī)的優(yōu)化設(shè)計(jì)[J];流體機(jī)械;2003年01期
10 劉小文;黃翔;吳志湘;;直接蒸發(fā)冷卻器填料性能的研究[J];流體機(jī)械;2010年04期
本文編號(hào):1438180
本文鏈接:http://www.sikaile.net/kejilunwen/sgjslw/1438180.html