甲狀腺結(jié)節(jié)超聲圖像紋理特征提取及半監(jiān)督分級(jí)方法研究
[Abstract]:Thyroid nodule is a common disease in clinic. Because of its low examination cost, no trauma, fast imaging speed, real-time diagnosis and strong repeatability, B-mode ultrasound imaging technology has become the most commonly used examination method. In this paper, we take ultrasound image as the research object, take the extraction of the texture feature of ultrasound subimage and the ultrasonic sign of region of interest (Region of Interest,ROI) of quantized nodule as the research object, and use the ultrasonic image and clinical data of the existing cases as the research object. In order to provide the feature set for the identification model, the ultrasonic features of ultrasound image texture and thyroid ultrasound image report and data system (thyroid imaging reporting and data system,TI-RADS) were analyzed and studied. First of all, 449 cases of thyroid nodules were analyzed and sorted. Ultrasound images were intercepted from ultrasonic video and the boundary of nodular ROI was labeled. According to the standard of TI-RADS, various nodular signs, the manifestation of each sign and the final diagnosis of nodule were arranged. Two common image segmentation techniques, NCut and Snakes, are introduced and applied to ROI extraction from thyroid nodules. Then, based on two tree complex wavelet transform (Dua1 Tree Complex Wavelet Transform,DT-CWT) and Gabor filter, a multi-scale fusion method is proposed to extract the texture features of thyroid nodules. In this method, first of all, the ultrasonic subimage containing thyroid nodule ROI is transformed by DT-CWT and Gabor to obtain the texture image, then the mean value and variance of the texture image are calculated, and the feature fusion is realized by combining the head and tail. Finally, the benign and malignant thyroid nodules can be distinguished by classifying and discriminating. Finally, this paper presents a semi-supervised classification method of thyroid nodules based on TI-RADS. TI-RADS is the standard for the diagnosis of thyroid nodules. As a computer-aided diagnosis system, the ultrasonic features of TI-RADS are quantitatively analyzed, and these signs are used as characteristic vectors to distinguish thyroid nodules, and then the clustering results obtained by semi-supervised fuzzy C-means clustering model are applied. The experimental results show that the method can distinguish different thyroid nodules. In this paper, we studied the thyroid ultrasound images from the texture features and classification methods of thyroid nodules, and achieved good results. As a kind of computer-aided diagnosis method, it can help doctors diagnose thyroid nodules in clinic, reduce doctors' subjective judgment, provide effective diagnostic advice, and further promote the application of machine learning in medicine.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R581;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 楊振森;李傳富;周康源;劉偉;馮煥清;;基于小波變換的超聲圖像紋理特征提取及前列腺癌診斷[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;2009年04期
2 ;[J];;年期
相關(guān)會(huì)議論文 前3條
1 劉玉芳;劉定生;;利用紋理特征提取城市用地信息方法探索[A];中國(guó)地理學(xué)會(huì)2004年學(xué)術(shù)年會(huì)暨海峽兩岸地理學(xué)術(shù)研討會(huì)論文摘要集[C];2004年
2 彭玲;趙忠明;;遙感圖像紋理特征提取的若干方法[A];信號(hào)與信息處理技術(shù)第三屆信號(hào)與信息處理全國(guó)聯(lián)合學(xué)術(shù)會(huì)議論文集[C];2004年
3 曾文涵;楊練根;謝鐵邦;李柱;;彈頭發(fā)射痕跡紋理特征提取方法的研究[A];中國(guó)儀器儀表學(xué)會(huì)第三屆青年學(xué)術(shù)會(huì)議論文集(上)[C];2001年
相關(guān)博士學(xué)位論文 前2條
1 畢于慧;彩色航空?qǐng)D像森林紋理特征提取方法的研究[D];北京林業(yè)大學(xué);2007年
2 李朝榮;Copula驅(qū)動(dòng)的小波域紋理特征提取研究[D];電子科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 肖敏敏;基于多維特征融合的地震剖面相似性研究[D];西安石油大學(xué);2015年
2 陳辰;基于相對(duì)相域頻繁項(xiàng)集的紋理特征提取方法及其在圖像分類中的應(yīng)用[D];蘭州大學(xué);2015年
3 李洪偉;基于高分辨率影像紋理特征提取日光溫室方法研究[D];蘭州大學(xué);2016年
4 楊旭;木材加工自動(dòng)化中的板材缺陷檢測(cè)技術(shù)研究[D];南京林業(yè)大學(xué);2016年
5 曹家梓;圖像的紋理特征提取與力/觸覺表達(dá)研究[D];東南大學(xué);2016年
6 鄔志強(qiáng);肋骨皮質(zhì)紋理特征提取分類算法設(shè)計(jì)[D];齊齊哈爾大學(xué);2016年
7 姚騁天;基于圖像紋理特征提取方法的人臉識(shí)別[D];中國(guó)計(jì)量大學(xué);2016年
8 王樸;人臉局部紋理特征提取方法及其應(yīng)用研究[D];重慶理工大學(xué);2016年
9 賀亞超;強(qiáng)光照下內(nèi)河溢油紋理特征提取研究[D];大連海事大學(xué);2017年
10 王昊;甲狀腺結(jié)節(jié)超聲圖像紋理特征提取及半監(jiān)督分級(jí)方法研究[D];西南交通大學(xué);2017年
,本文編號(hào):2261033
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2261033.html