云計(jì)算環(huán)境下任務(wù)調(diào)度優(yōu)化算法的研究
本文選題:云計(jì)算 + 任務(wù)調(diào)度; 參考:《中國科學(xué)技術(shù)大學(xué)》2017年碩士論文
【摘要】:當(dāng)今時(shí)代對(duì)海量數(shù)據(jù)處理能力的迫切需求和網(wǎng)絡(luò)技術(shù)的迅猛發(fā)展直接促使了云計(jì)算的產(chǎn)生。云計(jì)算通過互聯(lián)網(wǎng)將計(jì)算能力等服務(wù)以商品的形式提供給用戶,使得用戶可按需獲取計(jì)算資源然后依照相應(yīng)的計(jì)價(jià)模式按用付費(fèi)。云計(jì)算環(huán)境下的任務(wù)調(diào)度關(guān)乎云數(shù)據(jù)中心的運(yùn)行效率并且直接影響到用戶的服務(wù)體驗(yàn)。為促進(jìn)云計(jì)算的可持續(xù)發(fā)展、提升用戶的服務(wù)體驗(yàn),制定真正滿足用戶需求的高效合理的任務(wù)調(diào)度策略是十分必要的。為改善調(diào)度系統(tǒng)的調(diào)度性能,本文分別研究了云計(jì)算環(huán)境下獨(dú)立及關(guān)聯(lián)任務(wù)調(diào)度中的常用算法。并針對(duì)最受用戶關(guān)心的調(diào)度時(shí)間和調(diào)度費(fèi)用問題,在常用任務(wù)調(diào)度算法的基礎(chǔ)上提出了相應(yīng)的改進(jìn)算法。首先,分別對(duì)云計(jì)算中常用的獨(dú)立任務(wù)調(diào)度和關(guān)聯(lián)任務(wù)調(diào)度算法進(jìn)行了研究和對(duì)比,并詳細(xì)分析了其各自的應(yīng)用特性和優(yōu)缺點(diǎn)。其次,針對(duì)云環(huán)境中的獨(dú)立任務(wù)調(diào)度,綜合對(duì)任務(wù)集合調(diào)度時(shí)間、調(diào)度成本和系統(tǒng)資源利用率的考慮,提出了一種基于多種群遺傳算法的獨(dú)立任務(wù)調(diào)度策略。其以多種群遺傳算法代替?zhèn)鹘y(tǒng)遺傳算法,避免早熟收斂,并以min-min及max-min算法初始化種群,以提高最優(yōu)解的搜索效率。對(duì)于經(jīng)遺傳操作產(chǎn)生的子代,使用Metropolis準(zhǔn)則對(duì)其進(jìn)行篩選,使算法能以一定的概率接受差解,避免陷入局部最優(yōu)。與其他算法的對(duì)比實(shí)驗(yàn)結(jié)果表明,該算法可有效減少任務(wù)集合調(diào)度時(shí)間和調(diào)度成本,且能兼顧到系統(tǒng)的負(fù)載均衡,是云環(huán)境下一種行之有效的任務(wù)調(diào)度方法,且比其他算法更適應(yīng)于對(duì)大數(shù)量任務(wù)集合的處理。最后,針對(duì)待調(diào)度任務(wù)之間存在優(yōu)先級(jí)約束的情況,本文從提高任務(wù)調(diào)度的性價(jià)比出發(fā),提出了一種基于成本效益的改進(jìn)關(guān)聯(lián)任務(wù)調(diào)度算法,并將對(duì)關(guān)聯(lián)任務(wù)的調(diào)度轉(zhuǎn)換為了對(duì)大規(guī)模圖狀數(shù)據(jù)的處理。為了探索更多可能被確定式算法忽略的高質(zhì)量解集,該算法采用多種群遺傳算法擴(kuò)大最優(yōu)解的搜索范圍,并以任務(wù)集合的調(diào)度時(shí)間和調(diào)度成本設(shè)計(jì)適應(yīng)度函數(shù)。此外,為避免因盲目復(fù)制冗余任務(wù)導(dǎo)致費(fèi)用的過度增長(zhǎng),本文對(duì)傳統(tǒng)任務(wù)復(fù)制技術(shù)進(jìn)行了改進(jìn)。對(duì)比實(shí)驗(yàn)結(jié)果表明,通過兩方面的改進(jìn),該算法相較于確定式調(diào)度算法可以有效降低任務(wù)集合的調(diào)度成本,同時(shí)保證合理的調(diào)度長(zhǎng)度。
[Abstract]:Nowadays, the urgent demand for mass data processing ability and the rapid development of network technology directly promote the generation of cloud computing. Cloud computing provides services such as computing power to users in the form of goods through the Internet, which enables users to obtain computing resources on demand and then pay according to the corresponding pricing model. Task scheduling in cloud computing environment relates to the efficiency of cloud data center and directly affects the service experience of users. In order to promote the sustainable development of cloud computing, enhance the service experience of users, and formulate an efficient and reasonable task scheduling strategy to meet the needs of users, it is very necessary. In order to improve the scheduling performance of the scheduling system, the common algorithms of independent and associated task scheduling in cloud computing environment are studied in this paper. Aiming at the problem of scheduling time and scheduling cost which are most concerned by users, this paper proposes an improved algorithm based on the commonly used task scheduling algorithms. First of all, the common algorithms of independent task scheduling and associated task scheduling in cloud computing are studied and compared, and their application characteristics, advantages and disadvantages are analyzed in detail. Secondly, an independent task scheduling strategy based on multi-population genetic algorithm is proposed for independent task scheduling in cloud environment, considering the scheduling time, scheduling cost and system resource utilization. Multi-population genetic algorithm is used to replace traditional genetic algorithm to avoid premature convergence and min-min and max-min algorithms are used to initialize the population so as to improve the search efficiency of the optimal solution. For the offspring generated by genetic operation, Metropolis criterion is used to screen them, so that the algorithm can accept the differential solution with a certain probability and avoid falling into local optimum. Compared with other algorithms, the experimental results show that the algorithm can effectively reduce the task set scheduling time and scheduling cost, and can take into account the load balance of the system. It is an effective task scheduling method in the cloud environment. And it is more suitable to deal with large number of task sets than other algorithms. Finally, in view of the priority constraints between tasks to be scheduled, this paper proposes an improved algorithm for scheduling associated tasks based on cost-benefit, which is based on improving the performance and price ratio of task scheduling. The scheduling of associated tasks is converted to the processing of large scale graph data. In order to explore more high quality solution sets which may be neglected by deterministic algorithms, this algorithm uses multi-population genetic algorithm to expand the search range of optimal solutions, and designs fitness functions based on scheduling time and scheduling cost of task sets. In addition, in order to avoid excessive increase of cost caused by blind duplication of redundant tasks, the traditional task replication technology is improved in this paper. The experimental results show that compared with the deterministic scheduling algorithm, the proposed algorithm can effectively reduce the scheduling cost of the task set and ensure a reasonable scheduling length.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP301.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳黃科;祝江漢;朱曉敏;馬滿好;張振仕;;云計(jì)算中資源延遲感知的實(shí)時(shí)任務(wù)調(diào)度方法[J];計(jì)算機(jī)研究與發(fā)展;2017年02期
2 郭軍;馬安香;閆永明;孟煜;張斌;;基于組件服務(wù)質(zhì)量和服務(wù)性能的云服務(wù)性能瓶頸診斷方法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2017年02期
3 陶曉玲;韋毅;王勇;;一種基于分層多代理的云計(jì)算負(fù)載均衡方法[J];電子學(xué)報(bào);2016年09期
4 曹斌;王小統(tǒng);熊麗榮;范菁;;時(shí)間約束云工作流調(diào)度的粒子群搜索方法[J];計(jì)算機(jī)集成制造系統(tǒng);2016年02期
5 林偉偉;吳文泰;;面向云計(jì)算環(huán)境的能耗測(cè)量和管理方法[J];軟件學(xué)報(bào);2016年04期
6 柳玉;向東陽;鄭春弟;;面向異構(gòu)分布式計(jì)算環(huán)境的并行任務(wù)調(diào)度優(yōu)化方法[J];系統(tǒng)工程與電子技術(shù);2016年02期
7 李智勇;陳少淼;楊波;李仁發(fā);;異構(gòu)云環(huán)境多目標(biāo)Memetic優(yōu)化任務(wù)調(diào)度方法[J];計(jì)算機(jī)學(xué)報(bào);2016年02期
8 王曉麗;王宇平;孟坤;;考慮處理機(jī)釋放時(shí)間的可分任務(wù)調(diào)度優(yōu)化模型[J];西安電子科技大學(xué)學(xué)報(bào);2016年01期
9 魏峗;陳元元;;基于改進(jìn)蟻群算法的云計(jì)算任務(wù)調(diào)度模型[J];計(jì)算機(jī)工程;2015年02期
10 姚英彪;王璇;;面向多核任務(wù)調(diào)度的混合遺傳算法[J];系統(tǒng)工程與電子技術(shù);2015年08期
相關(guān)博士學(xué)位論文 前1條
1 鄧見光;云計(jì)算任務(wù)調(diào)度策略研究[D];華南理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前3條
1 張曉磊;云計(jì)算獨(dú)立任務(wù)及關(guān)聯(lián)任務(wù)調(diào)度算法研究[D];重慶大學(xué);2014年
2 黃璐;基于遺傳算法的云計(jì)算任務(wù)調(diào)度算法研究[D];廈門大學(xué);2014年
3 鄭莉;云計(jì)算環(huán)境下資源調(diào)度關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2014年
,本文編號(hào):2097102
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2097102.html