基于視角歸一化的步態(tài)識別研究
本文選題:步態(tài)識別 + 步態(tài)幀差熵圖; 參考:《西安科技大學(xué)》2017年碩士論文
【摘要】:隨著智能化程度的逐步深入,公共場合的安全形勢日益嚴峻,如何確保公共安全成為人們關(guān)心和矚目的焦點,而有效的身份識別技術(shù)則是確保公共安全的關(guān)鍵。生物特征以其安全、穩(wěn)定、可靠等特點廣泛應(yīng)用于智能監(jiān)控領(lǐng)域,較之于人臉、指紋等,步態(tài)以其非侵犯、遠距離、難以隱藏等優(yōu)勢受到了大批研究者的關(guān)注。近年來,多視角下的步態(tài)識別問題一直是步態(tài)識別研究的一個熱點,因此本文在多視角的背景下,重點研究了步態(tài)特征的提取以及視角歸一化問題。本文完成的主要研究工作如下:首先,采用背景差分法完成目標的提取。針對目標圖像中含有噪聲及不連通等問題,對其采用形態(tài)學(xué)方法進行去噪,并進行連通區(qū)域分析來獲得較完整的二值化步態(tài)圖像。由于步態(tài)是一個周期性的運動,一個周期內(nèi)的步態(tài)變化更能反映人體的運動特性,因此本文根據(jù)步態(tài)輪廓寬度變化來檢測步態(tài)周期,并對步態(tài)圖像進行標準化處理。其次,人體的步態(tài)圖像序列不僅含有靜態(tài)的步態(tài)信息,同時相鄰步態(tài)間的變化也隱含了豐富的動態(tài)信息,而常用的步態(tài)能量圖和步態(tài)幀差能量圖只考慮了其中的靜態(tài)信息和部分動態(tài)信息,因此本文將刻畫不確定性的熵引入到步態(tài)幀差能量圖中,提出采用步態(tài)幀差熵圖刻畫步態(tài)特征,再采用最近鄰分類法完成分類識別。最后,針對多視角步態(tài)識別過程復(fù)雜、計算量大等問題,本文提出基于低秩優(yōu)化的視角歸一化方法進行步態(tài)識別。在步態(tài)特征圖像的基礎(chǔ)上,將任意視角下的步態(tài)特征圖像采用秩優(yōu)化的方法歸一化到秩最小的視角,再采用最近鄰分類法進行跨視角下的識別驗證。實驗結(jié)果表明,本文提出的步態(tài)幀差熵圖的識別率要高于步態(tài)能量圖和步態(tài)幀差能量圖,而基于步態(tài)幀差熵圖的視角歸一化步態(tài)識別方法也在一定程度上提高了跨視角下的識別率。
[Abstract]:With the gradual deepening of intelligence, the security situation in public places is becoming increasingly serious. How to ensure public safety has become the focus of concern and attention, and effective identification technology is the key to ensure public safety. Biological features are widely used in the field of intelligent surveillance because of their security, stability and reliability. Compared with face, fingerprint and so on, gait has attracted a lot of researchers' attention because of its advantages of non-invasive, long-distance and difficult to hide. In recent years, gait recognition under multiple angles has been a hot topic in gait recognition. Therefore, this paper focuses on gait feature extraction and angle normalization under the background of multi-angle. The main work of this paper is as follows: firstly, the background difference method is used to extract the target. Aiming at the problems of noise and disconnection in the target image, the morphological method is used to de-noise and the connected region is analyzed to obtain a complete binary gait image. Gait is a periodic movement, and the gait changes in a period can reflect the movement characteristics of human body. Therefore, the gait period is detected according to the gait contour width change, and the gait image is standardized. Secondly, the gait image sequence of human body contains not only static gait information, but also rich dynamic information in the change of adjacent gait. However, the gait energy map and gait frame difference energy graph only consider the static information and some dynamic information, so the entropy which depicts uncertainty is introduced into the gait frame difference energy graph. Gait frame difference entropy graph is used to describe gait features, and the nearest neighbor classification method is used to complete classification and recognition. Finally, aiming at the complex process of multi-view gait recognition and the large amount of computation, this paper proposes a new method of gait recognition based on low-rank optimization. On the basis of gait feature image, the gait feature image with arbitrary angle of view is normalized to the angle of view with minimum rank by rank optimization method, and the nearest neighbor classification method is used to verify the recognition of gait feature image under cross-angle. The experimental results show that the recognition rate of the proposed gait difference entropy map is higher than that of gait energy map and gait frame difference energy map. The normalized gait recognition method based on gait frame difference entropy also improves the recognition rate of cross-angle gait to some extent.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 張全貴;王炳超;李凡;王星;;基于SVM的步態(tài)識別方法綜述[J];測控技術(shù);2016年08期
2 聶棟棟;馬勤勇;王毅;;自適應(yīng)動態(tài)能量特征提取的步態(tài)識別[J];小型微型計算機系統(tǒng);2014年01期
3 劉志勇;馮國燦;鄒小林;;一種基于靜態(tài)和動態(tài)特征的步態(tài)識別新方法[J];計算機科學(xué);2012年04期
4 梁韶聰;周明;李安安;;基于步態(tài)能量圖的KPCA和SVM的步態(tài)識別方法[J];計算機應(yīng)用研究;2010年07期
5 袁里馳;;基于改進的隱馬爾科夫模型的語音識別方法[J];中南大學(xué)學(xué)報(自然科學(xué)版);2008年06期
6 葉波,文玉梅;基于人體輪廓寬度特征的步態(tài)識別[J];計算機應(yīng)用;2005年08期
7 黎雷生,肖德貴;基于不變矩的步態(tài)識別[J];計算機應(yīng)用;2005年08期
8 張建榮,姜昱明;基于逆運動學(xué)的人體步態(tài)特征提取[J];計算機仿真;2005年05期
9 韓鴻哲;王志良;劉冀偉;李正熙;陳鋒軍;;基于線性判別分析和支持向量機的步態(tài)識別[J];模式識別與人工智能;2005年02期
10 劉玉棟,蘇開娜,馬麗;一種基于模型的步態(tài)識別方法[J];計算機工程與應(yīng)用;2005年09期
相關(guān)博士學(xué)位論文 前2條
1 胡榮;人體步態(tài)識別研究[D];華中科技大學(xué);2010年
2 賁f[燁;基于人體運動分析的步態(tài)識別算法研究[D];哈爾濱工程大學(xué);2010年
相關(guān)碩士學(xué)位論文 前7條
1 張鵬;耦合度量學(xué)習(xí)理論及其在步態(tài)識別中的應(yīng)用研究[D];山東大學(xué);2016年
2 范媛媛;基于步態(tài)的身份識別算法研究與實現(xiàn)[D];合肥工業(yè)大學(xué);2016年
3 常遠;基于多特征融合的正面視角步態(tài)識別研究[D];燕山大學(xué);2015年
4 李銳;基于幀差能量圖的步態(tài)識別算法研究[D];重慶師范大學(xué);2015年
5 李林杰;基于特征子空間的步態(tài)識別研究[D];燕山大學(xué);2014年
6 趙曉東;基于步態(tài)的骨架識別技術(shù)的研究[D];中北大學(xué);2013年
7 曹真;基于靜動態(tài)特征融合的正面視角步態(tài)識別研究[D];燕山大學(xué);2013年
,本文編號:2022750
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2022750.html