有效用于人臉識(shí)別的光照不變特征表示算法
發(fā)布時(shí)間:2018-06-15 16:52
本文選題:光照不變特征表示 + 人臉識(shí)別。 參考:《計(jì)算機(jī)工程與應(yīng)用》2017年01期
【摘要】:在光照變化環(huán)境下,人臉識(shí)別的魯棒性是人臉識(shí)別系統(tǒng)中一大挑戰(zhàn)。針對(duì)光照變化對(duì)人臉識(shí)別的影響,對(duì)經(jīng)典光照不變特征表示算法進(jìn)行了研究,提出一種基于局部標(biāo)準(zhǔn)差光照不變的人臉特征表示算法及其加權(quán)形式。結(jié)合完備線性鑒別分析(Complete-Linear Discriminant Analysis,C-LDA)算法提取特征,在Extended Yale-B與YALE人臉庫中,與其他處理光照變化的經(jīng)典方法相比,如多尺度Retinex(Multi Scale Retinex,MSR)、韋伯臉(Weber-Face,WF)和局部歸一化(Local Normalization,LN),提出的算法能獲得更高識(shí)別率。
[Abstract]:The robustness of face recognition is a major challenge in face recognition systems under varying illumination conditions. Aiming at the influence of illumination variation on face recognition, the classical illumination invariant feature representation algorithm is studied, and a face feature representation algorithm based on local standard deviation illumination invariance and its weighted form is proposed. Combined with the complete linear discriminant analysis (Complete-Linear discriminant Analysis) algorithm, the features are extracted. In extended Yale-B and Yale face databases, compared with other classical methods to deal with illumination changes, For example, multiscale Retinexy Multi scale Retinexan MSRs, Weber-Weber-FFs and Local NormalizationLNs, the proposed algorithm can obtain higher recognition rate.
【作者單位】: 暨南大學(xué)信息科學(xué)技術(shù)學(xué)院;暨南大學(xué)電氣信息學(xué)院;
【基金】:廣東省學(xué)科建設(shè)專項(xiàng)資金項(xiàng)目-科技創(chuàng)新(No.2013KJCX0023) 珠海市公共技術(shù)服務(wù)平臺(tái)科技項(xiàng)目(No.2013D0501990013)
【分類號(hào)】:TP391.41
,
本文編號(hào):2022743
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2022743.html
最近更新
教材專著