車輛電液混合動(dòng)力傳動(dòng)系統(tǒng)研究
[Abstract]:In the face of the contradiction between the rapid development of China's automobile industry and environmental pollution, the pure electric vehicle (EV) with zero emission and no pollution has attracted the attention of our government. The development of new energy vehicles represented by pure electric vehicles (EV) has become an important direction of automobile industry. In the research of new energy vehicle, regenerative braking technology is one of the key technologies. However, when the pure electric vehicle starts to regenerate braking and drive, the motor will produce a very large impulse current. If the current is fed directly into the battery, it will have a great impact on the battery life. In order to solve the problem of high current charge and discharge of battery, composite energy storage system is usually used. The super capacitor has the advantages of high power density, short charge and discharge time, but its internal resistance is small, the battery is not easy to manage, and it is difficult to match the battery parameters, the security is poor, and the cost is high. There is no electrical connection between the hydraulic system and the battery in the battery hydraulic composite energy storage system, and the hydraulic system has the advantages of super capacitance, low cost and mature technology. Based on the research of braking process and compound energy storage system of pure electric vehicle, a new type of electro-hydraulic hybrid power transmission system is designed in this paper, and the parameter matching design is carried out. The control strategy of regenerative braking is formulated, the integrated modeling of the system and the joint simulation are analyzed. The main work of this paper is as follows: (1) the characteristics of the vehicle electro-hydraulic hybrid drive system with different structure are analyzed, the structure scheme of the whole vehicle transmission system suitable for this paper is determined, and the hydraulic system control loop scheme is designed. Then the parameter matching design of the key parts of the whole power transmission system is carried out by using the parameter matching method based on the cycle working condition, including the motor, the battery, Hydraulic pump / motor (quadratic element parts), accumulator and transmission, etc. (2) the dynamics of braking and wheel dynamics of the whole vehicle are analyzed, in order to maximize the recovery of braking energy under the condition of satisfying the braking safety, According to the braking regulations and dynamic conditions, the braking force distribution of front and rear axle, the threshold value of braking strength and the judging strategy of braking mode are determined. Small strength braking force distribution strategy and ABS anti-lock braking control strategy based on Fuzzy-PID. (3) based on the advantages of mathematical modeling of Matlab/simulink software, the vehicle model, motor model, battery model, control system model are established. Based on the advantages of AMEsim in hardware modeling, the friction braking system model and the hydraulic regenerative braking system model are established. The feasibility of the system is analyzed on the AMEsim-simulink platform. (4) the dynamic response and efficiency of the hydraulic regenerative braking system under the driving and braking conditions are analyzed, and the dynamic response of the hydraulic regulating unit under sinusoidal excitation is analyzed. Finally, under the condition of different road adhesion coefficient and braking strength, the proposed control strategy is simulated and analyzed on the basis of the established joint simulation model. In this paper, the design and parameter matching of vehicle electro-hydraulic hybrid drive system are carried out, and the regenerative braking control strategy for electro-hydraulic hybrid power system is put forward, which makes the hydraulic system and battery system coordinate well. It can not only avoid the influence of high current charge and discharge on the life of power battery, but also increase the driving range of pure electric vehicle. It provides a new idea for the design of regenerative braking system of pure electric vehicle and has a good application prospect.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U463.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何仁,王憲英,王若平;混合動(dòng)力傳動(dòng)系統(tǒng)匹配評(píng)價(jià)指標(biāo)的探討[J];汽車技術(shù);2005年01期
2 吳光強(qiáng),鞠麗娟,羅邦杰;車輛混合動(dòng)力傳動(dòng)系統(tǒng)開(kāi)發(fā)現(xiàn)狀與展望[J];汽車工程;1997年02期
3 何仁,孫龍林,吳明;汽車新型儲(chǔ)能動(dòng)力傳動(dòng)系統(tǒng)節(jié)能機(jī)理[J];長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年03期
4 孫東明,項(xiàng)昌樂(lè);面向?qū)ο蠼T谲囕v動(dòng)力傳動(dòng)系統(tǒng)中的應(yīng)用[J];車輛與動(dòng)力技術(shù);2003年04期
5 吳憩棠;汽車動(dòng)力傳動(dòng)系統(tǒng)鑄件的浸滲技術(shù)[J];汽車與配件;2004年11期
6 王世新;徐勇;;混合動(dòng)力電動(dòng)汽車動(dòng)力傳動(dòng)系統(tǒng)的研究[J];機(jī)械研究與應(yīng)用;2005年06期
7 文孝霞;杜子學(xué);欒延龍;;汽車動(dòng)力傳動(dòng)系統(tǒng)匹配研究[J];重慶交通學(xué)院學(xué)報(bào);2006年01期
8 Alexander Craig;;新型封裝技術(shù)實(shí)現(xiàn)動(dòng)力傳動(dòng)系統(tǒng)的智能功率化[J];世界電子元器件;2006年09期
9 趙海波;項(xiàng)昌樂(lè);耿沖;孫恬恬;;履帶車輛動(dòng)力傳動(dòng)系統(tǒng)扭振的測(cè)試與分析[J];機(jī)械設(shè)計(jì)與制造;2007年06期
10 趙海波;項(xiàng)昌樂(lè);劉輝;;車輛動(dòng)力傳動(dòng)系統(tǒng)扭轉(zhuǎn)振動(dòng)研究的理論與方法[J];新技術(shù)新工藝;2007年04期
相關(guān)會(huì)議論文 前5條
1 何仁;王若平;王憲英;;混合動(dòng)力傳動(dòng)系統(tǒng)匹配評(píng)價(jià)指標(biāo)的探討[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——中國(guó)科協(xié)第五屆青年學(xué)術(shù)年會(huì)論文集[C];2004年
2 魏來(lái)生;趙春霞;;某4X4車動(dòng)力傳動(dòng)系統(tǒng)扭振計(jì)算與試驗(yàn)[A];全國(guó)先進(jìn)制造技術(shù)高層論壇暨第八屆制造業(yè)自動(dòng)化與信息化技術(shù)研討會(huì)論文集[C];2009年
3 邵朋禮;王劍;;車輛動(dòng)力傳動(dòng)系統(tǒng)有限元結(jié)構(gòu)分析[A];第四屆中國(guó)CAE工程分析技術(shù)年會(huì)論文集[C];2008年
4 韓曉成;王曉娟;嵇曉霞;;汽車動(dòng)力傳動(dòng)系統(tǒng)的仿真分析與研究[A];第九屆中國(guó)CAE工程分析技術(shù)年會(huì)專輯[C];2013年
5 李春明;魏來(lái)生;江磊;;四輪驅(qū)動(dòng)特種車輛動(dòng)力傳動(dòng)扭振分析計(jì)算[A];全國(guó)先進(jìn)制造技術(shù)高層論壇暨第七屆制造業(yè)自動(dòng)化與信息化技術(shù)研討會(huì)論文集[C];2008年
相關(guān)重要報(bào)紙文章 前5條
1 龔春全;我國(guó)雙速比動(dòng)力傳動(dòng)系統(tǒng)研制取得突破[N];中國(guó)船舶報(bào);2009年
2 唐偉;汽車動(dòng)力傳動(dòng)系統(tǒng)動(dòng)態(tài)試驗(yàn)系統(tǒng)完成[N];科技日?qǐng)?bào);2005年
3 祁培堅(jiān);通用公司公布發(fā)動(dòng)機(jī)發(fā)展戰(zhàn)略[N];中國(guó)汽車報(bào);2004年
4 李永鈞;汽車文明跑輸汽車增速[N];中國(guó)工業(yè)報(bào);2014年
5 陳玉金 汪向榮;儀征崛起國(guó)際化動(dòng)力系統(tǒng)產(chǎn)業(yè)群[N];新華日?qǐng)?bào);2006年
相關(guān)博士學(xué)位論文 前9條
1 金濤濤;混合動(dòng)力傳動(dòng)系統(tǒng)建模及優(yōu)化控制研究[D];北京交通大學(xué);2014年
2 陳龍安;混合動(dòng)力汽車動(dòng)力傳動(dòng)控制系統(tǒng)的研究與開(kāi)發(fā)[D];同濟(jì)大學(xué);2007年
3 趙光明;周向長(zhǎng)弧形彈簧式雙質(zhì)量飛輪非線性扭轉(zhuǎn)減振特性研究[D];武漢理工大學(xué);2013年
4 黃粉蓮;營(yíng)運(yùn)貨車動(dòng)力傳動(dòng)系統(tǒng)仿真及優(yōu)化[D];中國(guó)農(nóng)業(yè)大學(xué);2014年
5 孫宏圖;基于循環(huán)工況的城市公交客車動(dòng)力傳動(dòng)系統(tǒng)參數(shù)研究[D];大連理工大學(xué);2009年
6 王印束;基于動(dòng)力傳動(dòng)系統(tǒng)一體化的雙離合器自動(dòng)變速器控制技術(shù)研究[D];吉林大學(xué);2012年
7 陳雷;轎車雙質(zhì)量飛輪動(dòng)力特性研究[D];武漢理工大學(xué);2009年
8 李岳;機(jī)械動(dòng)力傳動(dòng)系統(tǒng)核基故障識(shí)別與狀態(tài)預(yù)測(cè)技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2007年
9 葉明;基于機(jī)械自動(dòng)變速的輕度混合動(dòng)力傳動(dòng)系統(tǒng)綜合控制研究[D];重慶大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 劉強(qiáng);基于發(fā)動(dòng)機(jī)激勵(lì)的汽車起步離合器接合的動(dòng)力傳動(dòng)系統(tǒng)扭轉(zhuǎn)振動(dòng)研究[D];長(zhǎng)安大學(xué);2015年
2 陳長(zhǎng)勇;基于城市循環(huán)工況的天然氣城市客車動(dòng)力傳動(dòng)系統(tǒng)優(yōu)化匹配研究[D];長(zhǎng)安大學(xué);2015年
3 余振奇;車輛動(dòng)力傳動(dòng)系統(tǒng)結(jié)構(gòu)動(dòng)力學(xué)及敏感度分析研究[D];北京理工大學(xué);2015年
4 蔡輝;后驅(qū)汽車傳動(dòng)系統(tǒng)設(shè)計(jì)與扭振分析[D];南京航空航天大學(xué);2015年
5 楊少鋒;LNG重卡動(dòng)力傳動(dòng)系統(tǒng)參數(shù)匹配優(yōu)化研究[D];太原理工大學(xué);2016年
6 賈小慶;車輛動(dòng)力傳動(dòng)系統(tǒng)匹配優(yōu)化及軟件開(kāi)發(fā)[D];江蘇大學(xué);2016年
7 肖濤;叉車動(dòng)力傳動(dòng)系統(tǒng)匹配及仿真平臺(tái)開(kāi)發(fā)[D];吉林大學(xué);2016年
8 李文武;某MPV車內(nèi)轟鳴噪聲試驗(yàn)分析與降噪[D];江蘇大學(xué);2016年
9 曹瑋;某型越野載貨車動(dòng)力傳動(dòng)系統(tǒng)匹配與優(yōu)化[D];南京理工大學(xué);2016年
10 王濤;XD260N5發(fā)動(dòng)機(jī)配套某12米后置公交車動(dòng)力性與經(jīng)濟(jì)性研究[D];廣西大學(xué);2016年
,本文編號(hào):2255653
本文鏈接:http://www.sikaile.net/kejilunwen/qiche/2255653.html