天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 汽車論文 >

自動(dòng)駕駛車輛城區(qū)道路環(huán)境換道行為決策方法研究

發(fā)布時(shí)間:2018-08-11 19:13
【摘要】:自動(dòng)駕駛車輛近些年來(lái)逐漸成為熱點(diǎn)話題,許多高校、傳統(tǒng)車企和互聯(lián)網(wǎng)企業(yè)紛紛展開(kāi)研究,且已經(jīng)發(fā)展到一定水平,但若想真正的實(shí)現(xiàn)在真實(shí)城區(qū)道路上行駛,仍有許多問(wèn)題需要解決。為使自動(dòng)駕駛車輛能夠在城區(qū)道路環(huán)境中自如行駛,本文針對(duì)自動(dòng)駕駛車輛在城市交通環(huán)境中的行為決策問(wèn)題展開(kāi)了深入的研究。針對(duì)城區(qū)道路環(huán)境中換道行為,提出了基于駕駛員換道經(jīng)驗(yàn)的自動(dòng)駕駛車輛換道決策模型。為模仿駕駛員決策過(guò)程,提出了類人的自動(dòng)駕駛車輛的直覺(jué)決策方法。首先基于離線學(xué)習(xí),使自動(dòng)駕駛車輛具有人類駕駛員的駕駛經(jīng)驗(yàn),再利用在線學(xué)習(xí),使自動(dòng)駕駛車輛在線學(xué)習(xí)駕駛員經(jīng)驗(yàn),從而模擬人類駕駛員行駛過(guò)程中經(jīng)驗(yàn)積累的過(guò)程。然而由于時(shí)間有限,本文僅針對(duì)直覺(jué)決策模型中離線學(xué)習(xí)部分展開(kāi)了深入的研究。本文針對(duì)換道場(chǎng)景,提出了基于駕駛員經(jīng)驗(yàn)的自動(dòng)駕駛車輛換道決策模型,基于粗糙集神經(jīng)網(wǎng)絡(luò)融合算法提取駕駛員換道規(guī)則,在使用粗糙集對(duì)駕駛員換道數(shù)據(jù)進(jìn)行規(guī)則提取的過(guò)程中,使用人工神經(jīng)網(wǎng)絡(luò)算法保證規(guī)則提取結(jié)果的一致性。規(guī)則提取完成后,使用分層狀態(tài)機(jī)方法建立分層換道規(guī)則庫(kù),將駕駛員規(guī)則應(yīng)用于自動(dòng)駕駛決策模型中,運(yùn)用Prescan和Simulink/Stateflow實(shí)現(xiàn)城區(qū)道路環(huán)境換道聯(lián)合仿真,仿真結(jié)果表明,該方法可以使自動(dòng)駕駛車輛在車流中進(jìn)行安全的換道,驗(yàn)證了規(guī)則的有效性。同時(shí),為了驗(yàn)證自動(dòng)駕駛車輛換道決策模型在真實(shí)城區(qū)道路環(huán)境中的可行性,首先使用V-rep和Visual Studio進(jìn)行聯(lián)合仿真來(lái)驗(yàn)證換道決策算法的安全性,之后基于北京理工大學(xué)智能車輛研究所比亞迪自動(dòng)駕駛車輛在北京市三環(huán)道路上進(jìn)行測(cè)試。實(shí)驗(yàn)結(jié)果說(shuō)明通過(guò)本文所建立的決策模型,自動(dòng)駕駛車輛可以在城區(qū)道路環(huán)境中安全換道。最后對(duì)自動(dòng)駕駛車輛換道決策模型的類人性進(jìn)行了分析,分析結(jié)果表明本文所建立的自動(dòng)駕駛車輛換道決策模型與人類駕駛員決策較相似,離線學(xué)習(xí)駕駛員經(jīng)驗(yàn)的效果較好。
[Abstract]:In recent years, autonomous vehicles have gradually become a hot topic. Many universities, traditional car companies and Internet enterprises have carried out research, and have developed to a certain level, but if they really want to drive on the roads of real urban areas, There are still many problems to be solved. In order to enable autonomous vehicles to travel freely in urban road environment, this paper focuses on the behavior decision of autonomous vehicles in urban traffic environment. According to the changing behavior in urban road environment, a decision model of automatic driving vehicle change based on driver's experience is proposed. In order to imitate the decision-making process of drivers, a human-like intuitionistic decision-making method for autonomous vehicles is proposed. Firstly, based on off-line learning, the self-driving vehicle has the driving experience of the human driver. Then, the self-driving vehicle can learn the driver's experience online by using the on-line learning, so as to simulate the process of the experience accumulation in the driving process of the human driver. However, due to the limited time, this paper focuses on the offline learning part of the intuitionistic decision model. In this paper, based on driver's experience, a decision model of automatic driving vehicle change is proposed, and the driver changing rules are extracted based on rough set neural network fusion algorithm. In the process of using rough set to extract the rules of the driver's change data, the artificial neural network algorithm is used to ensure the consistency of the rule extraction results. After the rule extraction is completed, the hierarchical change rules database is established by using the hierarchical state machine method, and the driver rules are applied to the automatic driving decision model. The combined simulation of road environment change in urban area is realized by using Prescan and Simulink/Stateflow. The simulation results show that. This method can make the automatic driving vehicle change the lane safely in the traffic flow, and verify the validity of the rules. At the same time, in order to verify the feasibility of the automatic driving vehicle change decision model in the real urban road environment, V-rep and Visual Studio are used to simulate the security of the algorithm. BYD self-driving vehicles based on Beijing Institute of Technology Intelligent vehicle Research Institute were then tested on the third Ring Road in Beijing. The experimental results show that the self-driving vehicle can change lanes safely in the urban road environment through the decision model established in this paper. Finally, the human nature of the automatic driving vehicle change decision model is analyzed. The results show that the model is similar to the human driver's decision, and the effect of off-line learning driver's experience is better.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U463.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳雪梅;田賡;苗一松;;面向智能駕駛行為的機(jī)器學(xué)習(xí)[J];道路交通與安全;2014年06期

2 諸葛程晨;唐振民;石朝俠;;基于多層Morphin搜索樹的UGV局部路徑規(guī)劃算法[J];機(jī)器人;2014年04期

3 Lipu Zhou;Zhidong Deng;;A New Algorithm for the Establishing Data Association Between a Camera and a 2-D LIDAR[J];Tsinghua Science and Technology;2014年03期

4 王艷平;;基于變精度粗糙直覺(jué)模糊集的決策規(guī)則獲取[J];計(jì)算機(jī)工程與科學(xué);2014年03期

5 王麗娟;楊習(xí)貝;楊靜宇;吳陳;;基于多粒度理論的不完備決策規(guī)則獲取[J];南京理工大學(xué)學(xué)報(bào);2013年01期

6 姜巖;趙熙俊;龔建偉;熊光明;陳慧巖;;簡(jiǎn)單城市環(huán)境下地面無(wú)人駕駛系統(tǒng)的設(shè)計(jì)研究[J];機(jī)械工程學(xué)報(bào);2012年20期

7 楊習(xí)貝;楊靜宇;;鄰域系統(tǒng)粗糙集模型[J];南京理工大學(xué)學(xué)報(bào);2012年02期

8 王懷亮;;交叉驗(yàn)證在數(shù)據(jù)建模模型選擇中的應(yīng)用[J];商業(yè)經(jīng)濟(jì);2011年10期

9 徐亮;張自力;;基于MAS的駕駛行為決策模型的研究[J];計(jì)算機(jī)工程與科學(xué);2010年05期

10 彭莉娟;康瑞;;考慮駕駛員特性的一維元胞自動(dòng)機(jī)交通流模型[J];物理學(xué)報(bào);2009年02期

相關(guān)博士學(xué)位論文 前2條

1 陳佳佳;城市環(huán)境下無(wú)人駕駛車輛決策系統(tǒng)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年

2 孫振平;自主駕駛汽車智能控制系統(tǒng)[D];國(guó)防科學(xué)技術(shù)大學(xué);2004年

相關(guān)碩士學(xué)位論文 前2條

1 李勇;無(wú)信號(hào)燈十字交叉口協(xié)作車輛控制研究[D];北京理工大學(xué);2015年

2 儲(chǔ)兵;基于粗糙集的神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)挖掘中的應(yīng)用研究[D];江蘇科技大學(xué);2013年

,

本文編號(hào):2177971

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/qiche/2177971.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ac581***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com