中亞熱帶南酸棗落葉闊葉林土壤磷素空間分異及其影響因素
本文選題:南酸棗落葉闊葉林 + 土壤磷。 參考:《中南林業(yè)科技大學(xué)》2016年碩士論文
【摘要】:我國中亞熱帶地區(qū)水熱條件良好,自然環(huán)境優(yōu)越,自然資源豐富,是我國重要的農(nóng)林生產(chǎn)基地,在保護(hù)環(huán)境、維持人類可持續(xù)發(fā)展等方面發(fā)揮著重要的作用。土壤P素是極為重要土壤養(yǎng)分之一,是植物生長發(fā)育不可缺少的營養(yǎng)元素,能夠促進(jìn)各種代謝正常進(jìn)行,影響著植物的生長和發(fā)育,一定程度上影響著森林林木的生長以及森林生產(chǎn)力的提高。對土壤P素的空間異質(zhì)性研究,是探討土壤P素與環(huán)境因子之間關(guān)系的有效方法,能夠有助于我們了解土壤結(jié)構(gòu)的形成,探究土壤的理化性質(zhì)和土壤功能。本研究在南酸棗(Choerospondias axillaris)落葉闊葉林建立1 hm2固定樣地,基于植物群落學(xué)調(diào)查數(shù)據(jù)和等距離網(wǎng)格布點(diǎn)取樣的土壤養(yǎng)分測定數(shù)據(jù),采用地統(tǒng)計學(xué)和GIS相結(jié)合的方法,研究土壤P含量的空間變異特征及其與地形因子、生物因子、土壤因子的關(guān)系,為揭示亞熱帶森林土壤P空間分布的調(diào)控機(jī)制,為亞熱帶森林健康經(jīng)營與管理提供了科學(xué)依據(jù)。研究結(jié)果表明:(1)南酸棗落葉闊葉林樣地地形因子、生物因子及土壤因子均呈正態(tài)分布,概率密度與頻數(shù)分布較為集中,地形因子中高程范圍在4.00~51.80 m,變異系數(shù)43.04%,凹凸度在-2.48~2.06之間,變異系數(shù)61.42%,均達(dá)到中等程度變異;生物因子中凋落物現(xiàn)存量在2.03 t·hm-2~16.50 t·hm-2之間,變異系數(shù)48.74%,物種數(shù)及植株數(shù)范圍分別在1.00~13.00和2.00~44.00之間,變異系數(shù)分布為32.55%和48.66%,達(dá)到中等程度變異;土壤因子中含水率在25.37%~46.27%之間,變異系數(shù)9.17%,土壤pH在4.02~4.69之間,變異系數(shù)3.43%,均為弱程度變異,有機(jī)C、全N含量在16.33~116.81g·kg-1、1.60~3.83g·kg-1之間,變異系數(shù)35.94%及17.8%,均達(dá)到中等程度變異。(2)樣地腐殖質(zhì)層、0-10、10-20、20-30 cm土層全P含量范圍在0.12~0.54g·kg-1,平均值分別為0.36、0.29、0.27、0.23g·kg-1,變異系數(shù)分別為19.10%、23.95%、28.22%、28.84%;土層有效P含量范圍在4.88-22.29mg·kg-1,平均值分別為12.13、2.46、2.63、1.90mg·kg-1,變異系數(shù)分別為31.36%、35.40%、40.69%、44.95%;全P、有效P含量均達(dá)到了中等強(qiáng)度變異,隨著土壤深度增加,全P、有效P含量下降,變異程度增大,同一土層有效P含量的變異幅度較全P含量高;各土層土壤全P半方差函數(shù)的理論模型符合指數(shù)模型、球狀模型和高斯模型;有效P半方差函數(shù)的理論模型符合指數(shù)模型以及球狀模型;在中等尺度范圍上,土壤全P、有效P含量表現(xiàn)出中等強(qiáng)度的空間自相關(guān)性,表明空間異質(zhì)性主要是由結(jié)構(gòu)性因素引起的。(3)各土層全P含量變程為92.800~168.900 m,有效P含量變程為79.430-106.200 m,全P含量較有效P含量具有較大的空間自相關(guān)性尺度,空間連續(xù)性較高于有效P;土壤全P含量分維數(shù)范圍在1.86-1.978之間,土壤有效P含量分維數(shù)范圍在1.803-1.869之間,這表明土壤全P、有效P含量均具有良好的分形特征,有效P含量分維數(shù)較全P分維數(shù)低,具有更好的結(jié)構(gòu)性,空間分布更加簡單,而全P的空間格局相對復(fù)雜。各土層全P、有效P含量呈明顯的條帶狀和斑塊狀梯度性分布,在一些小樣地內(nèi)為相似的空間分布格局。(4)土壤全P、有效P含量與高程均呈顯著和極顯著負(fù)相關(guān),與凹凸度也呈負(fù)相關(guān),但除20-30cm土層全P達(dá)到極顯著負(fù)相關(guān)外,其余土層均未達(dá)到顯著水平。土壤全P、有效P含量與地表凋落物現(xiàn)存量呈顯著負(fù)相關(guān),與樣地植物種數(shù)呈負(fù)相關(guān),除20-30 cm土層全P含量與植物種數(shù)呈顯著相關(guān)外,其他各土層均未達(dá)到顯著水平,與樣地植物株數(shù)不存在相關(guān)性。土壤全P含量與土壤含水率呈負(fù)相關(guān),除0-10 cm土層全P含量與含水率呈極顯著負(fù)相關(guān)外,其他各土層均未達(dá)到顯著水平;土壤有效P含量與土壤含水率呈正相關(guān)關(guān)系,除0-10 cm土層有效P含量與含水率呈顯著相關(guān)外,其他土層均未達(dá)到顯著水平;土壤全P、有效P含量與土壤pH呈正相關(guān),除腐殖質(zhì)層全P含量、0-10cm土層全P、20-30cm土層有效P含量外,其他土層與土壤pH相關(guān)性均未達(dá)到顯著水平;土壤全P、有效P與土壤有機(jī)C、全N均呈極顯著正相關(guān)?梢,土壤P素空間分異特征是受到多種環(huán)境因子綜合作用的。
[Abstract]:In the middle and subtropical regions of China, the water and heat conditions are good, the natural environment is superior, and the natural resources are rich. It is an important agricultural and forestry production base in China. It plays an important role in protecting the environment and maintaining the sustainable development of human beings. Soil P is one of the most important soil nutrients, which is an indispensable nutrient element for plant growth and development, and can promote the growth and development of plants. A variety of normal metabolism affects the growth and development of plants and affects the growth of forest trees and the increase of forest productivity to a certain extent. The study of spatial heterogeneity of soil P elements is an effective method to explore the relationship between soil P and environmental factors, which can help us to understand the formation of soil structure and explore the soil. In this study, 1 hm2 fixed plots were set up in the deciduous broadleaf forest of Choerospondias axillaris. Based on the data of plant community study and the measured data of soil nutrients sampled at the same distance grid, the spatial variation characteristics of the soil P content were studied by the combination of geostatistics and GIS. The relationship between the topographic factors, biological factors and soil factors to reveal the regulation mechanism of the spatial distribution of P in subtropical forest soil provides a scientific basis for the healthy management and management of subtropical forests. The results show that: (1) the terrain factors, biological factors and soil factors in the deciduous broad-leaved forest of the South sour jujube are all positive distribution, the probability density and the probability density. The frequency distribution is more concentrated, the height range of topographic factors is 4 to 51.80 m, the coefficient of variation is 43.04%, the concave and convex degree is between -2.48 and 2.06, the coefficient of variation is 61.42%, and the variation coefficient is moderate to the moderate degree. The litter size of the biological factor is between 2.03 t. Hm-2 to 16.50 t. Hm-2, the variation coefficient is 48.74%, the number of species and plant number are 1, respectively. Between 13 and 2 to 44, the variation coefficient is 32.55% and 48.66%, and the soil moisture content is between 25.37% and 46.27%, the coefficient of variation is 9.17%, the soil pH is 4.02 to 4.69, the coefficient of variation is 3.43%, and the organic C and all N content are between 16.33 ~ 116.81g. Kg-1,1.60 to 3.83g kg-1. The variation coefficient 35.94% and 17.8%, all reach the medium degree variation. (2) the ground humus layer, the 0-10,10-20,20-30 cm soil layer whole P content range is 0.12 ~ 0.54g. Kg-1, the average value is respectively 0.36,0.29,0.27,0.23g kg-1, the variation coefficient is 19.10%, 23.95%, 28.22%, 28.84% respectively, the soil layer effective P content range is 4.88-22.29mg. Kg-1, the average value is respectively 12.13,2.46,2.63,1.90mg. Kg-1, the coefficient of variation was 31.36%, 35.40%, 40.69%, 44.95%; all P, the content of effective P reached medium intensity variation. As the soil depth increased, all P, the content of effective P decreased, the variation degree increased, the variation amplitude of the effective P content in the same soil layer was higher than that of the whole P; the whole P half variance function of the soil layer soil was full. The model conforms to the exponential model, the spherical model and the Gauss model; the theoretical model of the effective P semi variance function conforms to the exponential model and the spherical model. On the medium scale, the soil P and the effective P content show the medium intensity spatial autocorrelation, indicating that the spatial heterogeneity is mainly caused by the structural factors. (3) the whole soil layer is all the soil layer. The content variation of P was 92.800 ~ 168.900 m, the content of effective P content changed to 79.430-106.200 m, the total P content had larger spatial autocorrelation scale than the effective P content, and the spatial continuity was higher than that of the effective P; the whole soil P content fractal dimension range was between 1.86-1.978, and the effective P content of soil was between the 1.803-1.869. The content of effective P has a good fractal feature. The fractal dimension of effective P content is lower than that of all P fractal dimension. It has better structure and more simple spatial distribution, while the spatial pattern of all P is relatively complex. All soil layers are P, the effective P content is obviously striped and patch like gradient distribution, and a similar spatial distribution pattern in some small plots. (4) the soil all P, the effective P content and elevation are significantly and significantly negative correlation, and the degree of concave and convex is also negative correlation, but in addition to the 20-30cm soil layer all P is extremely significant negative correlation, the other soil layers are not reached significant level. The soil all P, the effective P content is negatively correlated with the ground litter size, except for the number of plant species negative correlation, except 20-30. The total P content in the cm soil layer was significantly related to the number of plant species, and the other soil layers did not reach the significant level, and there was no correlation with the number of plant plants. The total P content in soil was negatively correlated with soil moisture content. Except the total P content in the 0-10 cm soil layer was negatively correlated with the water content, the soil layers were not significantly higher than that of the soil, and the effective soil P contained the soil layer. There is a positive correlation between the soil moisture content and the soil moisture content, except that the effective P content of the 0-10 cm soil layer is significantly correlated with the water content, and all the other soil layers have not reached a significant level. The total soil P, the effective P content is positively correlated with the soil pH, except the total P content in the humus layer, the 0-10cm soil whole P, the effective P content of the 20-30cm soil layer, and the pH correlation between the other soil layers and the soil. The soil all P, effective P and soil organic C and all N have significant positive correlation. It is obvious that the spatial differentiation characteristics of soil P are integrated with various environmental factors.
【學(xué)位授予單位】:中南林業(yè)科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S714
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 巨天珍,張勃,楊永利;廬山落葉闊葉林與區(qū)域環(huán)境關(guān)系的研究[J];甘肅科學(xué)學(xué)報;1998年04期
2 陳清朗;;落葉闊葉林[J];植物雜志;1984年06期
3 蔡永立,方其英,鄭冬官,項艷;大別山北坡落葉闊葉林種間相關(guān)的研究[J];生物數(shù)學(xué)學(xué)報;1994年04期
4 王獻(xiàn)溥;廣西酸性土地區(qū)亞熱帶落葉闊葉林的群落學(xué)特點(diǎn)及其合理利用的方向[J];廣西植物;1990年04期
5 鐘章成,董鳴,M.J.A 維爾格,J.H 威廉斯;西歐林堡地區(qū)落葉闊葉林群落生態(tài)學(xué)研究[J];西南師范大學(xué)學(xué)報(自然科學(xué)版);1991年04期
6 嚴(yán)昌榮,AlecDowney,韓興國,陳靈芝;北京山區(qū)落葉闊葉林中核桃楸在生長中期的樹干液流研究[J];生態(tài)學(xué)報;1999年06期
7 喻理飛;貴州柏箐喀斯特臺原區(qū)常綠落葉闊葉林多樣性研究[J];貴州科學(xué);2002年02期
8 金則新,張建平;天臺山落葉闊葉林群落學(xué)特性研究[J];臺州師專學(xué)報;1999年03期
9 金則新;浙江天臺山落葉闊葉林特征研究[J];廣西植物;2000年02期
10 劉光t;;江漢平原晚冰期及冰期后的植被與環(huán)境[J];Journal of Integrative Plant Biology;1991年08期
相關(guān)會議論文 前1條
1 路紀(jì)琪;侯進(jìn)懷;瞿文元;;太行山獼猴資源保護(hù)及可持續(xù)發(fā)展研究[A];野生動物生態(tài)與管理學(xué)術(shù)討論會論文摘要集[C];2001年
相關(guān)重要報紙文章 前1條
1 值班記者 趙常麗;皇天后土:為大都市增添無限生機(jī)[N];咸陽日報;2010年
相關(guān)博士學(xué)位論文 前3條
1 宋坤;安徽常綠闊葉林—落葉闊葉林交錯帶的森林植被特征及其成因[D];華東師范大學(xué);2012年
2 龍茹;湖北大老嶺落葉闊葉林群落結(jié)構(gòu)和植物性系統(tǒng)多樣性研究[D];北京林業(yè)大學(xué);2011年
3 戚鵬程;基于GIS的隴西黃土高原落葉闊葉林潛在分布及潛在凈初級生產(chǎn)力的模擬研究[D];蘭州大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 周建超;中、晚全新世氣候、沉積環(huán)境變化在桂林巖溶濕地沉積物中的記錄[D];西南大學(xué);2015年
2 蔣芳;中亞熱帶落葉闊葉林和常綠闊葉林土壤有機(jī)碳、全氮空間異質(zhì)性比較[D];中南林業(yè)科技大學(xué);2016年
3 胡瑞彬;中亞熱帶南酸棗落葉闊葉林土壤磷素空間分異及其影響因素[D];中南林業(yè)科技大學(xué);2016年
4 王瑞雪;南京仙林落葉闊葉林中主要植物的葉群體動態(tài)[D];南京師范大學(xué);2015年
5 蘭乾;瑯琊山落葉闊葉林更新特點(diǎn)及其特有樹種光合特性研究[D];安徽農(nóng)業(yè)大學(xué);2010年
6 王煈;基于HJ星遙感數(shù)據(jù)的落葉闊葉林識別模型及其全生長期LAI估算方法[D];南京大學(xué);2014年
7 徐珂;基于MODIS影像的北京地區(qū)生長季及其影響因子研究[D];北京林業(yè)大學(xué);2012年
8 王春;南京紫金山植物區(qū)系與植物資源研究[D];南京林業(yè)大學(xué);2009年
,本文編號:2012796
本文鏈接:http://www.sikaile.net/kejilunwen/nykj/2012796.html