青海祁漫塔格地區(qū)它溫查漢西鐵多金屬礦床地質(zhì)特征及成因探討
本文選題:礦床成因 + 它溫查漢西; 參考:《長安大學(xué)》2015年碩士論文
【摘要】:它溫查漢西鐵多金屬礦床位于青海祁漫塔格山東南部,距離格爾木市西北(300°方位)約200km,是近年來繼沙丘、長山、牛苦頭后在該地區(qū)發(fā)現(xiàn)的又一中型鐵多金屬礦床,鐵礦石探明資源量超過4000萬噸,其礦體與成礦巖體均隱伏于第四系風(fēng)積砂覆蓋層下。礦區(qū)的大地構(gòu)造位置位于東昆北祁漫塔格早古生代巖漿弧帶,在那陵格勒河斷裂的北側(cè)。地理坐標(biāo)為:東經(jīng)92°31′-92°52′,北緯36°55′-37°00′之間,總面積約100km2。本論文通過研究它溫查漢西鐵多金屬礦床的地質(zhì)特征、蝕變分帶性以及成礦巖體的地球化學(xué)特征,以期查明該礦床地質(zhì)成因、成礦期次、控礦要素和找礦模式,并與其他礦床進行對比,確立區(qū)域上的主攻礦床類型和總結(jié)成礦規(guī)律,從而有效指導(dǎo)礦產(chǎn)勘查實踐。最終,關(guān)于祁漫塔格地區(qū)構(gòu)造-巖漿-成礦的關(guān)系,以及它溫查漢西鐵多金屬礦床的地質(zhì)特征及成因,取得了如下研究成果:(1)梳理出東昆侖西段(祁漫塔格地區(qū))在中三疊世早期約(242~239Ma)正處于洋殼俯沖結(jié)束向碰撞開始的轉(zhuǎn)換階段,而從237~204Ma區(qū)內(nèi)轉(zhuǎn)入后碰撞伸展階段。期間發(fā)生過大規(guī)模的幔源巖漿底侵和殼;旌献饔,尤以中-晚三疊世(210~237Ma)的花崗巖最為發(fā)育,與成礦關(guān)系最為密切。(2)測得礦區(qū)鉆孔ZK25408中的花崗閃長巖的LA-ICP-MS鋯石U-Pb年齡為(236.1±1.2)Ma,屬于中三疊世(T2),代表了巖漿的結(jié)晶年齡,與前人對磁鐵礦中白云母利用40Ar-39Ar法獲得(230.7±2.0Ma)的坪年齡和(229.9±3.5Ma)的等時線年齡一致,印證了巖漿作用對成礦的貢獻。(3)查明礦區(qū)花崗閃長斑巖屬于弱過鋁質(zhì)、高鉀鈣堿性花崗巖,其成因類型為I型花崗巖,具有LILE(如Ba、Sr等)相對虧損和HFSE(如Th、U、Zr、Hf等)相對富集的特征;稀土元素配分曲線呈右傾型,斜率較大,具有相對富LREE、貧HREE以及負(fù)Eu異常的特征。(4)三疊紀(jì)中-晚期對應(yīng)區(qū)內(nèi)最后一個構(gòu)造-巖漿-成礦旋回,是祁漫塔格地區(qū)后期的主要成礦期。NWW向區(qū)域性深大斷裂控制了主要侵入巖體和礦集區(qū)的分布,次級斷裂蝕變帶賦存有重要礦床(體)。它溫查漢西多金屬礦床是典型的受斷層和巖漿作用共同控制的與巖漿-熱液系統(tǒng)有關(guān)的鐵礦類型,兼具矽卡巖型礦床和熱液脈型礦床的特征。(5)它溫查漢西鐵多金屬礦床的形成經(jīng)歷了矽卡巖期和石英-硫化物期。其中,矽卡巖期又細(xì)分為早(干)矽卡巖階段、晚(濕)矽卡巖階段以及退化蝕變階段;石英-硫化物期又細(xì)分為早硫化物階段(鐵-銅硫化物階段)和晚硫化物階段(鉛-鋅硫化物階段)。(6)礦石結(jié)構(gòu)構(gòu)造、礦物組合以及圍巖蝕變的特征,顯示礦床成礦溫度和元素具有分帶性:在接觸帶附近按距離侵入體中心由近到遠(yuǎn)SiO2和Fe2O3、Al2O3含量由高逐漸降低,CaO含量則由低逐漸升高;在內(nèi)接觸帶主要由較高溫礦物組成;在外接觸帶主要由高-中溫礦物組成。(7)歸納推測它溫查漢西鐵多金屬礦床礦石中稀土元素配分與成礦花崗閃長斑巖應(yīng)該具有相同的特征,二者系同一巖漿作用在不同階段的產(chǎn)物;硫、鉛的主要來源為幔源巖漿,伴有不同程度的殼源物質(zhì)的混入。
[Abstract]:It is located in the southern part of Shandong of qiminutan, Qinghai, located in the northwest of Golmud city (300 degrees). It is another medium-sized iron polymetallic deposit found in this area in recent years after the bitter head of the sand dunes, Changshan and cattle. The ore exploration resources are more than 40 million tons, and the ore body and the ore-forming rock are hidden in the Quaternary wind. Under the sand cover layer, the geotectonic position of the mining area is located in the early Paleozoic magmatic arc zone of the East Kunlun Qun TGGE, and on the north side of the fault of the mausoleum river. The geographical coordinates are: the East Jing 92 degree 31 '-92 degree 52', the northern latitude 36 degrees 55 '-37 degree 00', the total area about 100km2.. The variation zone and the geochemical characteristics of the ore-forming rock masses are expected to find out the geological genesis of the ore deposit, the metallogenic epoch, the ore controlling elements and the ore prospecting model, and compare with the other ore deposits, establish the main types of ore deposits in the region and summarize the metallogenic regularity, and thus effectively guide the mineral exploration practice. The relationship of mineralization and the geological characteristics and causes of its west iron polymetallic deposit have been obtained as follows: (1) combing the western part of the East Kunlun (Qun Tai Ge region) in the early middle three fold period (242~239Ma) is in the transition phase of the end of the oceanic subduction to the beginning of the collision, and from the 237~204Ma region to the post collision extension stage. Large scale mantle derived magma undertransgression and crust mantle mixing occurred during the period, especially in the middle late three fold (210~237Ma) granites, which were most closely related to mineralization. (2) the LA-ICP-MS zircon U-Pb age of granodiorite in the drilling ZK25408 of the mining area was (236.1 + 1.2) Ma, belonging to the middle three world (T2), representing the year of crystallization of the magma. Age, consistent with the age of 40Ar-39Ar (230.7 + 2.0Ma) and (229.9 + 3.5Ma) isochronous age of (229.9 + 3.5Ma) of the Muscovite in magnetite, the contribution of magmatism to mineralization is confirmed. (3) it is found that the granite diorite porphyry in the mining area belongs to the weak peralalic and high potassium calc alkaline granite, and its genetic type is I type granite, which has LILE (such as Ba, Sr). Relative enrichment characteristics of relative loss and HFSE (such as Th, U, Zr, Hf, etc.); the distribution curves of rare earth elements are right-shaped, with a larger slope, relatively rich in LREE, poor HREE and negative Eu anomalies. (4) the last tectonic magma mineralization cycle in the middle and Late Triassic period is the.NWW direction region of the main metallogenic period in the late qunantag region. The sexual deep fault control the distribution of the main intrusive rock mass and ore area, the secondary fracture alteration zone has an important deposit (body). It is a typical type of iron ore related to the magmatic hydrothermal system controlled by faults and magmatism, and has the characteristics of the skarn deposit and hydrothermal vein type deposit. (5) it The formation of the west iron polymetallic deposit experienced skarn and quartz sulfide periods, among which the skarn period was subdivided into early (dry) skarn phase, late (wet) skarn phase and degenerate alteration stage, and quartz sulfide phase was subdivided into early sulfide phase (iron copper sulfide phase) and late sulfide phase (lead zinc sulfide). (6) (6) the characteristics of ore structure, mineral assemblage and wall rock alteration show that the metallogenic temperature and elements of the ore deposit are Zoning: near to the center of the contact zone, the content of Al2O3 is gradually reduced from high to Fe2O3, the content of Al2O3 is gradually reduced, and the content of CaO is gradually rising from low to high; The contact zone is mainly composed of high medium temperature minerals. (7) it is concluded that the distribution of rare earth elements in the ore of the west iron polymetallic deposit should have the same characteristics as the metallogenic granite diorite porphyry, and the two is the product of the same magmatism at different stages; the main source of sulfur and lead is the mantle derived magma, accompanied by different degrees of shell source. Mix in.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P618.2
【參考文獻】
相關(guān)期刊論文 前10條
1 伍躍中;喬耿彪;陳登輝;;東昆侖祁漫塔格地區(qū)構(gòu)造巖漿作用與成礦關(guān)系初步探討[J];大地構(gòu)造與成礦學(xué);2011年02期
2 諶宏偉,羅照華,莫宣學(xué),劉成東,柯珊;東昆侖造山帶三疊紀(jì)巖漿混合成因花崗巖的巖漿底侵作用機制[J];中國地質(zhì);2005年03期
3 王秉璋;羅照華;李懷毅;諶宏偉;胡旭莉;;東昆侖祁漫塔格走廊域晚古生代—早中生代侵入巖巖石組合及時空格架[J];中國地質(zhì);2009年04期
4 張文淮 ,張恩世 ,陳紫英;大冶鐵山鐵(銅)礦床礦物包裹體研究及礦床成因探討[J];地球科學(xué);1984年04期
5 許國建,林新多;安徽長龍山矽卡巖漿型鐵礦床成因探討[J];地球科學(xué);1990年06期
6 豐成友;趙一鳴;李大新;劉建楠;肖曄;李國臣;馬圣鈔;;青海西部祁漫塔格地區(qū)矽卡巖型鐵銅多金屬礦床的矽卡巖類型和礦物學(xué)特征[J];地質(zhì)學(xué)報;2011年07期
7 高曉峰;校培喜;賈群子;;灘間山群的重新厘定——來自柴達(dá)木盆地周緣玄武巖年代學(xué)和地球化學(xué)證據(jù)[J];地質(zhì)學(xué)報;2011年09期
8 莫宣學(xué);羅照華;鄧晉福;喻學(xué)惠;劉成東;諶宏偉;袁萬明;劉云華;;東昆侖造山帶花崗巖及地殼生長[J];高校地質(zhì)學(xué)報;2007年03期
9 趙斌,趙勁松,李兆麟,張重澤,彭卓倫;Characteristics of melt inclusions in skarn minerals from Fe, Cu(Au) and Au(Cu) ore deposits in the region from Daye to Jiujiang[J];Science in China(Series D:Earth Sciences);2003年05期
10 趙一鳴;夕卡巖礦床研究的某些重要新進展[J];礦床地質(zhì);2002年02期
,本文編號:2014315
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/2014315.html