湘西花垣MVT型鉛鋅礦集區(qū)成礦作用研究
本文選題:MVT + 成礦作用; 參考:《成都理工大學(xué)》2017年博士論文
【摘要】:花垣鉛鋅礦床是湘西-鄂西鉛鋅成礦帶中最具代表性的超大型鉛鋅礦床,該礦床遠景儲量超過1000萬噸,鉛鋅品位高,礦床規(guī)模大、具有很高的經(jīng)濟價值和研究價值。本文在全面介紹礦床區(qū)域地質(zhì)、礦集區(qū)礦床地質(zhì)特征基礎(chǔ)上,系統(tǒng)分析了礦床微量元素、稀土元素地球化學(xué)特征,S、Pb、Sr、C、H、O同位素地球化學(xué)特征及流體包裹體特征,利用多種定年方法對礦床進行了精確定年,從成礦物質(zhì)來源、成礦流體來源以及地層、構(gòu)造、有機質(zhì)這三種因素與成礦的關(guān)系等方面討論了花垣鉛鋅礦床的礦床成因,在此理論基礎(chǔ)上,進而建立了礦床成因模式,最后討論了湘西-鄂西成礦域的低溫成礦作用;ㄔV田鉛鋅礦床閃鋅礦和方鉛礦為與盆地鹵水有關(guān)的沉積型熱液改造成因。硫化物中含分散元素,閃鋅礦中鎘元素含量最為富集,為MVT型鉛鋅礦床典型特征。礦石礦物與圍巖稀土元素組成具有較大的差異性,前者稀土元素總量明顯低于后者,含礦層并不是成礦物質(zhì)的主要來源。鉛鋅礦石中硫化物的還原硫主要來自地層中海相硫酸鹽的還原。鉛同位素可能主要來源于奧陶系—寒武系地層。成礦流體的鍶同位素比值高于賦礦地層,成礦流體流經(jīng)了清虛洞組下伏地層,并與其中具有高鍶同位素比值的泥巖地層牛蹄塘組進行了水巖反應(yīng)及同位素交換。主礦化期的方解石和閃鋅礦系統(tǒng)的C、H、O同位素研究結(jié)果顯示花垣地區(qū)團結(jié)、李梅、土地坪、蜂塘和大石溝等鉛鋅礦床中主成礦期脈石礦物方解石的13C、18O同位素依次表現(xiàn)出逐漸降低的特征,鉛鋅礦床成礦流體中的C主要來源于海相碳酸鹽巖的溶解作用,圍巖具沉積成因海相碳酸鹽巖特征。成礦流體的主要來源是建造水和大氣降水;ㄔ貐^(qū)鉛鋅礦床成礦流體是具有低溫度、中高鹽度、高密度,以鈉和鈣氯化物為主的熱鹵水性質(zhì)的含礦熱水溶液。成礦流體均一溫度具有由北而南降低的趨勢,顯示了成礦流體的運移方向。流體包裹體氣相中發(fā)育CO2、CH4和H2。閃鋅礦、方鉛礦等礦石礦物與方解石、螢石等脈石礦物應(yīng)屬同一富成礦元素的成礦流體在同一成礦期次相同條件下沉淀的產(chǎn)物;ㄔV集區(qū)李梅鉛鋅礦床成礦地質(zhì)時代為中奧陶世,獅子山鉛鋅礦床成礦地質(zhì)時代為早泥盆世,方解石可能形成于早奧陶世。多期性的成礦作用發(fā)生于加里東期,成礦時代晚于賦礦圍巖。該地區(qū)鉛鋅礦床的分布明顯受巖性、地層、巖相的控制。成礦模式分為成礦流體形成階段和成礦熱液運移富集階段。第一個階段發(fā)生于盆地埋藏和構(gòu)造擠壓時期,深部流體與地層水、大氣降水混合發(fā)生廣泛的水/巖反應(yīng),形成富含鉛鋅等金屬元素的成礦流體;第二個階段發(fā)生于伸展構(gòu)造環(huán)境,發(fā)生大規(guī)模遷移的成礦流體在臺地邊緣等有利部位,發(fā)生熱化學(xué)硫酸鹽還原反應(yīng),沉淀富集成礦。湘西-鄂西地區(qū)成礦流體是低溫度、中高鹽度、高密度,以鈉和鈣氯化物為主的熱鹵水,該區(qū)鉛鋅礦床為大范圍低溫流體成礦作用的結(jié)果,可能與華南地區(qū)發(fā)生的拉張斷陷導(dǎo)致的盆地流體大規(guī)模流動有關(guān)。
[Abstract]:Huayuan Pb Zn deposit is a deposit in Western Hubei Xiangxi superlarge lead-zinc lead-zinc metallogenic belt in the most representative, the deposit reserves of more than 10 million tons of lead and zinc deposits are large in scale, high grade, has very high economic value and research value. This paper introduced in detail the regional geology, ore deposit geological characteristics on the basis of system analysis, trace element deposit, geochemical characteristics of rare earth elements, S, Pb, Sr, C, H, O isotope geochemistry and fluid inclusion characteristics, using a variety of dating methods were accurate dating of deposits, from mineral sources, sources of ore-forming fluids and the formation, structure, organic matter these three factors and the relationship between the uranium mineralization and discussed the genesis of lead-zinc deposits in Huayuan, on the basis of this theory, and then establish the metallogenic model, finally discussed the low temperature in the Xiangxi West Hubei metallogenic domain of mineralization. Huayuan orefield Lead-zinc deposit in sphalerite and galena as sedimentary hydrothermal transformation causes related to basin brine. Sulfide containing dispersed elements, the contents of cadmium in the enrichment of sphalerite, the typical feature of MVT type lead-zinc deposit. The ore minerals and rock composition of rare earth elements has great difference, the total amount of rare earth elements was significantly lower than the latter, the main source of the ore bearing not of ore materials. The reduction of sulfur sulfide in lead-zinc ore mainly from strata marine sulfate. The lead isotope can be mainly attributed to the Ordovician - Cambrian strata. The ore-forming fluid is higher than the ratio of Sr isotopes and ore formation, metallogenic fluid flows through the strata Qingxudong formation, mudstone formation of Niutitang Formation and has high strontium isotope ratios and the reaction and the isotopic water rock exchange. The main mineralization period of calcite and sphalerite system C, H, O isotope Research results show that Huayuan united, Li Mei, land Ping, bee pond and Dashigou lead-zinc deposits in the main mineralization stage of calcite 13C, 18O isotope are characterized by decreased the dissolution of ore-forming fluids in C mainly from marine carbonate rock, with sedimentary genesis of marine carbonate rocks the main feature. The source of the ore-forming fluid is built and meteoric water. The ore-forming fluid lead-zinc deposit in Huayuan area is a low temperature, high salinity, high density, hot brine with sodium and calcium chloride in the ore bearing hydrothermal solution. The ore-forming fluid with uniform temperature decreased from north to south, shows the migration the direction of the ore-forming fluid. The fluid inclusions in the development phase CO2, CH4 and H2. in sphalerite, galena ore minerals and gangue minerals such as calcite, fluorite should belong to the same rich metallogenic element mineralization The product of fluid precipitation in the same metallogenic period under the same conditions. Huayuan ore district Li Mei lead-zinc deposit metallogenic age of Middle Ordovician, the lion mountain lead-zinc deposit metallogenic geological age is early Devonian, calcite may be formed in the early Ordovician period. The mineralization occurred in Caledonian mineralization the times later than the host rock. The distribution of lead-zinc deposits in this area are significantly affected by lithology, stratigraphy, facies control. The metallogenic model is divided into formation stage of ore-forming fluids and ore-forming hydrothermal migration and enrichment stages. The first stage occurred in the burial and tectonic compressional period, deep fluid and formation water, meteoric water mixing occurs widely in water / rock reaction, the formation of ore-forming fluids rich in lead and zinc and other metal elements; the second stage occurred in the extensional tectonic environment, large-scale migration of ore-forming fluids in platform margin, favorable location, occurrence of thermo chemical sulfate Salt reduction reaction, precipitation and enrichment of mineralization. Xiangxi - West Hubei metallogenic fluid is low temperature, high salinity, high density, hot brine with sodium and calcium chloride. The lead-zinc deposit in this area for a wide range of cryogenic fluid mineralization results may be associated with the large-scale flow of basin fluid occurred in Southern China caused tension fault depression.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:P618.4
【參考文獻】
相關(guān)期刊論文 前10條
1 曹亮;段其發(fā);彭三國;周云;李X;甘金木;;湘西地區(qū)鉛鋅礦成礦物質(zhì)來源——來自S、Pb同位素的證據(jù)[J];地質(zhì)通報;2017年05期
2 于玉帥;劉阿睢;戴平云;趙武強;陶明;劉重們;;貴州銅仁塘邊鉛鋅礦床成礦時代和成礦物質(zhì)來源——來自Rb-Sr同位素測年和S-Pb同位素的證據(jù)[J];地質(zhì)通報;2017年05期
3 曹亮;段其發(fā);張權(quán)緒;劉重們;周云;李X;;揚子陸塊北緣冰洞山鉛鋅礦床閃鋅礦Rb-Sr定年及其地質(zhì)意義[J];礦物巖石地球化學(xué)通報;2016年06期
4 周云;段其發(fā);陳毓川;唐菊興;曹亮;彭三國;甘金木;;湘西花垣鉛鋅礦田成礦物質(zhì)來源的C、O、H、S、Pb、Sr同位素制約[J];地質(zhì)學(xué)報;2016年10期
5 楊霆;楊紹祥;;湘西獅子山鉛鋅礦床礦化富集特征及控礦因素——湖南花垣—鳳凰地區(qū)鉛鋅礦整裝勘查系列研究之一[J];地質(zhì)通報;2016年05期
6 周云;段其發(fā);曹亮;甘金木;;湘西花垣鉛鋅礦稀土元素地球化學(xué)特征與指示意義[J];礦物學(xué)報;2015年S1期
7 賀文;葉會壽;胡華斌;陳紹聰;曹晶;陳若瑜;;冀東孤山子超基性巖體礦物巖石地球化學(xué)及Sr-Nd-Pb同位素特征[J];地質(zhì)學(xué)報;2015年07期
8 曹亮;段其發(fā);周云;;湖北凹子崗鋅礦床Rb-Sr同位素測年及其地質(zhì)意義[J];中國地質(zhì);2015年01期
9 胡鵬;吳越;張長青;胡明月;;揚子板塊北緣馬元鉛鋅礦床閃鋅礦LA-ICP-MS微量元素特征與指示意義[J];礦物學(xué)報;2014年04期
10 李X;吳昌雄;湯朝陽;段其發(fā);于玉帥;;湘西黔東地區(qū)鉛鋅礦床C、O同位素地球化學(xué)特征及其對成礦過程的指示[J];中國地質(zhì);2014年05期
相關(guān)博士學(xué)位論文 前3條
1 段其發(fā);湘西—鄂西地區(qū)震旦系—寒武系層控鉛鋅礦成礦規(guī)律研究[D];中國地質(zhì)大學(xué);2014年
2 張長青;中國川滇黔交界地區(qū)密西西比型(MVT)鉛鋅礦床成礦模型[D];中國地質(zhì)科學(xué)院;2008年
3 金中國;黔西北地區(qū)鉛鋅礦控礦因素、成礦規(guī)律與找礦預(yù)測研究[D];中南大學(xué);2006年
相關(guān)碩士學(xué)位論文 前3條
1 辛宇佳;西秦嶺北部花崗巖地球化學(xué)特征及其大地構(gòu)造意義[D];中南大學(xué);2014年
2 李同柱;大渡河谷中段鉛鋅礦床成因與成礦模式研究[D];成都理工大學(xué);2007年
3 李發(fā)源;MVT鉛鋅礦床中分散元素賦存狀態(tài)和富集機理研究——以四川天寶山、大梁子鉛鋅礦床為例[D];成都理工大學(xué);2003年
,本文編號:1759897
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/1759897.html