三自由度伺服驅(qū)動(dòng)運(yùn)動(dòng)模擬平臺(tái)的研究
本文選題:并聯(lián)機(jī)構(gòu) + 位置分析; 參考:《沈陽(yáng)工業(yè)大學(xué)》2012年碩士論文
【摘要】:并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)平臺(tái)在模擬仿真領(lǐng)域具有較強(qiáng)的應(yīng)用價(jià)值,可以在仿真模擬平臺(tái)上進(jìn)行所需環(huán)節(jié)的半物理仿真試驗(yàn),也可以將這種仿真模擬器用于娛樂(lè)設(shè)施的開(kāi)發(fā)與應(yīng)用,使游戲者體驗(yàn)到身臨其境、驚險(xiǎn)刺激的感覺(jué),給人們的業(yè)余生活帶來(lái)更大的樂(lè)趣,例如4D競(jìng)技賽車和娛樂(lè)賽馬等。本文由三自由度并聯(lián)機(jī)構(gòu)的機(jī)械結(jié)構(gòu)入手,結(jié)合4D互動(dòng)立體游戲平臺(tái)的設(shè)計(jì)指標(biāo),在分析平臺(tái)運(yùn)動(dòng)機(jī)構(gòu)的機(jī)械特性和運(yùn)動(dòng)學(xué)特性的基礎(chǔ)上,,確定了仿真模擬平臺(tái)的各執(zhí)行部件的選型和系統(tǒng)的控制方法。 三自由度并聯(lián)機(jī)構(gòu)模擬運(yùn)動(dòng)平臺(tái)的主體由三根可伸縮的支撐桿(電動(dòng)缸)構(gòu)成,通過(guò)改變伸縮支撐桿的長(zhǎng)度來(lái)實(shí)現(xiàn)運(yùn)動(dòng)模擬平臺(tái)兩旋轉(zhuǎn)一平移的特定位姿;诖诉\(yùn)動(dòng)模擬平臺(tái)的機(jī)械結(jié)構(gòu),通過(guò)空間坐標(biāo)系的變換獲得其運(yùn)動(dòng)學(xué)位姿的數(shù)學(xué)模型,并由此推導(dǎo)出三自由度仿真模擬平臺(tái)的運(yùn)動(dòng)學(xué)反解和運(yùn)動(dòng)學(xué)正解。根據(jù)其運(yùn)動(dòng)學(xué)反解數(shù)學(xué)公式,運(yùn)用MATLAB對(duì)其運(yùn)動(dòng)軌跡進(jìn)行仿真分析,驗(yàn)證此模擬平臺(tái)用于4D立體游戲的可行性。 本文使用PMAC運(yùn)動(dòng)控制卡來(lái)構(gòu)建仿真模擬平臺(tái)的控制系統(tǒng),將PMAC運(yùn)動(dòng)控制卡與并聯(lián)機(jī)構(gòu)相結(jié)合組成運(yùn)動(dòng)控制系統(tǒng)的主體,應(yīng)用PMAC的內(nèi)置PLC模塊對(duì)并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)形式的同步性以及協(xié)調(diào)性進(jìn)行程序編寫,使運(yùn)動(dòng)模擬平臺(tái)具有簡(jiǎn)單的運(yùn)動(dòng)功能;赑MAC的運(yùn)動(dòng)控制系統(tǒng)可以更充分地利用計(jì)算機(jī)的計(jì)算和處理能力,使運(yùn)動(dòng)模擬平臺(tái)的仿真模擬效果更加逼真。 另外,隨著國(guó)內(nèi)三自由度并聯(lián)機(jī)器人的不斷開(kāi)發(fā)與應(yīng)用,相信此平臺(tái)還可以在其它領(lǐng)域得倒廣泛應(yīng)用,如:醫(yī)療器械、并聯(lián)機(jī)床、機(jī)械手臂等。
[Abstract]:The parallel mechanism motion platform has a strong application value in the field of simulation and simulation. It can be used in the semi-physical simulation test of the required links on the simulation platform, and can also be used in the development and application of entertainment facilities. Let players experience the experience, thrilling feeling, to people's amateur life to bring more fun, such as 4D competitive racing and entertainment horse racing and so on. Starting with the mechanical structure of the 3-DOF parallel mechanism and combining the design index of 4D interactive stereoscopic game platform, this paper analyzes the mechanical characteristics and kinematics characteristics of the kinematic mechanism of the platform. The selection of each executive part and the control method of the system are determined. The main body of the three-degree-of-freedom parallel mechanism simulation motion platform is composed of three extensible support rods (electric cylinders). By changing the length of the telescopic support rod, the motion simulation platform can be rotated and translated. Based on the mechanical structure of the motion simulation platform, the mathematical model of the motion degree posture of the platform is obtained by the transformation of the spatial coordinate system, and the inverse kinematics solution and the forward kinematics solution of the three-degree-of-freedom simulation platform are derived. According to the mathematical formula of its kinematics inverse solution, the simulation analysis of its motion track is carried out by MATLAB, and the feasibility of using this simulation platform in 4D stereoscopic game is verified. In this paper, the PMAC motion control card is used to construct the control system of the simulation platform. The PMAC motion control card is combined with the parallel mechanism to form the main body of the motion control system. The PLC module of PMAC is used to program the synchronism and coordination of parallel mechanism, which makes the motion simulation platform have simple motion function. The motion control system based on PMAC can make full use of the computing and processing ability of the computer and make the simulation effect of the motion simulation platform more realistic. In addition, with the continuous development and application of 3-DOF parallel robot in China, it is believed that the platform can be widely used in other fields, such as medical devices, parallel machine tools, mechanical arms and so on.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH112
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 陶建峰;朱野;閆述;王旭永;;重載三自由度旋轉(zhuǎn)并聯(lián)平臺(tái)的位置逆解及其分析[J];上海交通大學(xué)學(xué)報(bào);2007年04期
2 王旭永,王顯正,張穎,朱軍;三自由度并聯(lián)驅(qū)動(dòng)平臺(tái)機(jī)構(gòu)的位置逆解及其分析[J];上海交通大學(xué)學(xué)報(bào);1998年01期
3 趙新華,彭商賢,張偉軍,李春書;一種分析并聯(lián)機(jī)器人位置正解的高效算法[J];天津大學(xué)學(xué)報(bào);2000年02期
4 高峰,黃玉美,史文浩,彭中波,樊澤明,程祥;3-RPS并聯(lián)機(jī)構(gòu)工作空間分析的球坐標(biāo)搜索法[J];西安理工大學(xué)學(xué)報(bào);2001年03期
5 黃柯棣,邱曉剛,段紅,王躍峰;略論軍用仿真技術(shù)面臨的需求與發(fā)展的方向[J];系統(tǒng)仿真學(xué)報(bào);2001年01期
6 魏納新,彭秀艷,趙希人,施向宇;三自由度運(yùn)動(dòng)仿真平臺(tái)設(shè)計(jì)及應(yīng)用[J];系統(tǒng)仿真學(xué)報(bào);2003年01期
7 劉晉,任Pr;第六講操縱機(jī)電一體化系統(tǒng)——PMAC運(yùn)動(dòng)程序及PLC程序編寫[J];制造技術(shù)與機(jī)床;2002年10期
相關(guān)碩士學(xué)位論文 前3條
1 李紹安;某型戰(zhàn)機(jī)飛行模擬器三自由度運(yùn)動(dòng)平臺(tái)的研制[D];華中科技大學(xué);2005年
2 解巨軍;基于PMAC切割機(jī)器人交流伺服控制系統(tǒng)[D];哈爾濱工程大學(xué);2006年
3 鄭右非;基于PMAC的3-RRRT并聯(lián)機(jī)器人數(shù)控系統(tǒng)開(kāi)發(fā)[D];天津理工大學(xué);2005年
本文編號(hào):2082361
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2082361.html