分布式并行計(jì)算環(huán)境下GML空間數(shù)據(jù)的劃分策略及算法研究
[Abstract]:GML is widely used in many fields because of its simplicity, semi-structure, interoperability, openness, versatility and flexibility. With the development of solving problems in the field of geographic information, the problems encountered are becoming more and more complex and larger. The efficiency optimization and performance improvement of the traditional spatial data storage and spatial analysis algorithm based on GIS can not meet the needs of massive data storage and spatial operation. Using distributed parallel computing platform can solve this problem well. The merits and demerits of distributed parallel systems depend to a great extent on the quality of data partitioning strategies, but the present spatial data partitioning methods do not take spatial association into account. Therefore, in view of a spatial data partition method which is suitable for GML spatial data, considering load balance, proximity degree, area balance and spatial correlation relationship, this paper has obtained the following research results: first, The shortcomings of spatial data partitioning based on Hilbert spatial permutation code and spatial data partitioning based on K-average clustering algorithm are studied and analyzed. The former is not good at maintaining the equilibrium of the spatial data of each node, while the latter is unstable because of the uncertainty of the initial centroid. Secondly, combining Hilbert spatial permutation code and K-average clustering algorithm, and considering the spatial correlation of objects, a new GML data partition algorithm is proposed. The algorithm takes into account the load balance of each node, the proximity of the object, the area balance and the spatial correlation between the objects. Finally, according to the proposed GML spatial data partition algorithm, the GML distributed storage system is analyzed and designed, and the data partition module of the distributed parallel GML storage system based on the Hadoop platform is completed. The load balance of the data partition algorithm is verified by the system, and the parallel speedup ratio of Oracle Spatial and spatial data partition algorithm based on K-average clustering is compared and compared with that of Hilbert code partition algorithm. The results show that the partition algorithm has good load balance and excellent parallel query efficiency.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:P208;TP338.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 胡敏;付t ;;對(duì)幾種典型分布式計(jì)算技術(shù)的比較[J];電腦知識(shí)與技術(shù);2010年05期
2 李芳芳;;云計(jì)算現(xiàn)狀綜述[J];電腦知識(shí)與技術(shù);2011年04期
3 賈婷;魏祖寬;唐曙光;金在弘;;一種面向并行空間查詢的數(shù)據(jù)劃分方法[J];計(jì)算機(jī)科學(xué);2010年08期
4 龔明;;網(wǎng)格技術(shù)[J];科技廣場(chǎng);2006年11期
5 張葉紅;;云中漫步:圖書館云計(jì)算應(yīng)用[J];農(nóng)業(yè)圖書情報(bào)學(xué)刊;2010年12期
6 趙春宇;孟令奎;林志勇;;一種面向并行空間數(shù)據(jù)庫(kù)的數(shù)據(jù)劃分算法研究[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2006年11期
7 王永杰;孟令奎;趙春宇;;基于Hilbert空間排列碼的海量空間數(shù)據(jù)劃分算法研究[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2007年07期
8 黃鎮(zhèn)圣;;云計(jì)算技術(shù)與應(yīng)用分析[J];網(wǎng)絡(luò)財(cái)富;2010年12期
相關(guān)博士學(xué)位論文 前1條
1 陳建華;原生模式GML空間數(shù)據(jù)管理機(jī)制研究[D];成都理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 胡清;基于云計(jì)算的券商網(wǎng)絡(luò)營(yíng)銷服務(wù)平臺(tái)研究與設(shè)計(jì)[D];南昌大學(xué);2010年
2 張開;動(dòng)態(tài)可重構(gòu)計(jì)算中程序熱點(diǎn)識(shí)別關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
3 霍樹民;基于Hadoop的海量影像數(shù)據(jù)管理關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
4 王宇;分布式并行數(shù)據(jù)庫(kù)系統(tǒng)DP-SQL的恢復(fù)機(jī)制[D];電子科技大學(xué);2003年
5 宋靜;分布式并行數(shù)據(jù)庫(kù)一致性機(jī)制研究與實(shí)現(xiàn)[D];電子科技大學(xué);2006年
6 姜素芳;GML數(shù)據(jù)存儲(chǔ)與索引機(jī)制的研究與實(shí)現(xiàn)[D];江蘇大學(xué);2006年
7 馬冬青;基于Oracle XML DB技術(shù)的GML數(shù)據(jù)存儲(chǔ)研究[D];中南大學(xué);2008年
8 馬偉明;基于遺傳算法的分布式任務(wù)調(diào)度系統(tǒng)的分析[D];大連理工大學(xué);2008年
9 葉梓;簡(jiǎn)單要素模型并行化空間運(yùn)算研究與實(shí)現(xiàn)[D];中國(guó)地質(zhì)大學(xué);2009年
10 向曉明;基于分布式蟻群算法的TSP問題研究[D];西南交通大學(xué);2009年
,本文編號(hào):2398142
本文鏈接:http://www.sikaile.net/kejilunwen/jisuanjikexuelunwen/2398142.html