基于云計算虛擬化平臺的內存管理研究
[Abstract]:Cloud computing technology can integrate network, computing, storage and other computer resources, through the network flexible to provide users with a variety of high-quality computing services. Virtualization technology is the foundation of cloud computing, which can realize the efficient management and use of computer resources. Memory virtualization is not only the most complex part of virtualization technology, but also the key to improve the efficiency of virtualization. In the virtualization environment, the memory requirement changes with the running of different applications, but the traditional memory virtualization scheme can not adjust the virtual machine memory efficiently according to the memory usage of the virtual machine. This kind of circumstance often can cause the waste of memory resource of virtualization platform. This paper designs an efficient memory management system based on KVM virtualization technology. The system consists of three parts: virtual machine memory monitor module, virtual machine memory balance module and multi-host memory balance module. Firstly, this paper designs a real-time and accurate memory awareness technology, which is less expensive for host and client than other technologies. Based on the real-time memory usage of virtual machine, this paper designs an efficient strategy of virtual machine memory adjustment combined with ant colony algorithm, which can allocate virtual machine memory reasonably. By combining virtual machine memory balloon technology and virtual machine memory hot addition technology, the two technologies can adjust virtual machine memory efficiently and mutually. Different from other memory management techniques which can only adjust the memory usage under a single host the system can also achieve memory balance between multiple hosts through virtual machine online migration technology. Finally, the experimental results show that the memory management system can not only adjust virtual machine memory efficiently, but also achieve memory balance under multiple hosts. Finally, the comprehensive performance test shows that the system can achieve about 120% of the host computer memory overmatch, greatly improve the utilization of computer memory resources.
【學位授予單位】:杭州電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP302;TP315
【參考文獻】
相關期刊論文 前10條
1 武佳寧;;基于VMware vSphere的數據中心服務器虛擬化解決方案[J];微型電腦應用;2016年09期
2 劉金鑫;董衛(wèi)宇;王煒;王立新;;基于注解信息的系統(tǒng)虛擬機內存尋址優(yōu)化技術[J];計算機工程與設計;2016年09期
3 吳岳;;Hypervisor中內存回收技術的改進[J];計算機系統(tǒng)應用;2016年09期
4 李雪竹;陳國龍;;云計算虛擬化平臺的內存資源全局優(yōu)化研究[J];計算機工程;2015年07期
5 黃秋蘭;李莎;程耀東;陳剛;;高能物理計算環(huán)境中KVM虛擬機的性能優(yōu)化與應用[J];計算機科學;2015年01期
6 王志鋼;汪小林;靳辛欣;王振林;羅英偉;;Mbalancer:虛擬機內存資源動態(tài)預測與調配[J];軟件學報;2014年10期
7 馬騰;;基于云計算的政務信息資源整合與服務模式研究[J];福州大學學報(自然科學版);2014年05期
8 黃俊;王慶鳳;劉志勤;王耀彬;;基于資源狀態(tài)蟻群算法的云計算任務分配[J];計算機工程與設計;2014年09期
9 姚華超;王振宇;;基于KVM-QEMU與Libvirt的虛擬化資源池構建[J];計算機與現代化;2013年07期
10 羅軍舟;金嘉暉;宋愛波;東方;;云計算:體系架構與關鍵技術[J];通信學報;2011年07期
相關碩士學位論文 前2條
1 李傳云;KVM虛擬機熱遷移算法分析及優(yōu)化[D];浙江大學;2016年
2 劉永;云計算環(huán)境下虛擬機資源調度策略研究[D];山東師范大學;2012年
,本文編號:2393568
本文鏈接:http://www.sikaile.net/kejilunwen/jisuanjikexuelunwen/2393568.html