XDNP網(wǎng)絡(luò)處理器快速總線接口FBI設(shè)計(jì)與實(shí)現(xiàn)
[Abstract]:With the rapid development of Internet technology, network processor, as the core equipment of modern network system, is developing towards the direction of multi-core on-chip system. With the rapid development of microelectronics technology, the physical realization of chips is becoming more and more complicated in order to meet the demand of performance, power consumption and cost. As the data exchange hub of the network processor, the fast bus interface (FBI) carries many data paths and control paths between the network port, packet processing engine and SDRAM unit. It is the platform to realize the data exchange between the network processor and the external data. So the fast bus interface (FBI) is one of the key units to determine the performance of the network processor. How to design and implement fast bus interface (FBI) is very important for high performance network processor system. In this paper, the working mechanism of XDNP network processor in fast port mode is described, and the function and architecture of fast bus interface (FBI) are standardized. The sequence number of micropacket is generated to help the packet processing engine (PE) keep the order of data packet. The dual-port structure of SRAM is used as the data buffer unit to solve the problem of data synchronization between asynchronous clock domains, and the way of DMA is adopted to reduce the workload of packet processing engine PE. The command queue of PUSH/PULL engine is designed to arbitrate and queue the instruction code from packet processing engine PE and SDRAM controller. This solves the problem that the packet processing engine PE may have multiple threads simultaneously sending forward packet instructions to the fast bus interface FBI. Then, this paper completes the detailed design of FBI, introduces the design of PUSH/PULL engine, receiver / transmitter controller, receive / transmit cache, and synthesizes constraints. The realization and optimization of fast bus interface FBI are given, and the methods of timing violation and optimization are analyzed in detail. In the worst case, the maximum operating frequency of the fast bus interface FBI is 233MHz, which is better than the target frequency requirement of the system design. Finally, the physical implementation of the fast bus interface (FBI) under the SMICCMOS130nm process is completed according to the network table and constraint file.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP334.7;TN432
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 簡(jiǎn)貴胄,葛寧,馮重熙;靜態(tài)時(shí)序分析方法的基本原理和應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2002年14期
2 賀再紅;周炎濤;;多通道組合陣列存儲(chǔ)系統(tǒng)結(jié)構(gòu)與并行I/O設(shè)計(jì)[J];計(jì)算機(jī)工程與科學(xué);2009年07期
3 舒適,唐長(zhǎng)文,閔昊;ASIC綜合后的靜態(tài)驗(yàn)證方法的研究[J];微電子學(xué);2004年01期
相關(guān)重要報(bào)紙文章 前1條
1 清華大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)系 經(jīng)彤 洪先龍 許靜宇;[N];計(jì)算機(jī)世界;2005年
相關(guān)碩士學(xué)位論文 前9條
1 陳敬洋;基于多核包處理器的高速數(shù)據(jù)交換總線設(shè)計(jì)研究[D];西安電子科技大學(xué);2011年
2 何科;網(wǎng)絡(luò)處理器高性能數(shù)據(jù)交換接口設(shè)計(jì)研究[D];西安電子科技大學(xué);2011年
3 陳峗;大規(guī)模集成電路自動(dòng)布局布線設(shè)計(jì)方法的研究[D];電子科技大學(xué);2003年
4 葉靜;“銀河飛騰”DSP的IP核物理設(shè)計(jì)與優(yōu)化[D];國(guó)防科學(xué)技術(shù)大學(xué);2007年
5 高璐;網(wǎng)絡(luò)處理器高帶寬數(shù)據(jù)總線接口模塊設(shè)計(jì)研究[D];西安電子科技大學(xué);2009年
6 劉曉宇;YHFT-DX芯片關(guān)鍵模塊的物理設(shè)計(jì)[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
7 陳思明;基于SOC ENCOUNTER的百萬(wàn)門(mén)級(jí)ASIC后端設(shè)計(jì)[D];電子科技大學(xué);2010年
8 徐元莉;LOBS網(wǎng)絡(luò)中邊緣路由器FEC組幀的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2007年
9 鞏洪湖;基于IP包處理的多線程流水線處理器ASIC設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2012年
本文編號(hào):2365391
本文鏈接:http://www.sikaile.net/kejilunwen/jisuanjikexuelunwen/2365391.html