基于GPU的近似字符串匹配并行算法的研究
[Abstract]:Graphics processor (GPU) has strong parallel processing ability and low computing cost. Using GPU to speed up string operation has become a hot research topic in the field of parallel computing. Approximate string matching technology has been widely used in virus detection, file retrieval, computational biology and many other fields. The traditional serial algorithm is slow, while the existing parallel algorithms are based on multiprocessor mode. The calculation cost is very high. Therefore, it is of great practical significance to study the efficient parallel algorithm of approximate string matching on GPU. The main contents and contributions of this paper are as follows: firstly, the programming environment of GPU general computing is summarized, and the working principle, programming model and memory model of NVIDIA CUDA are emphatically studied, as well as how to configure CUDA programming environment. Secondly, for the approximate string matching problem that allows k-mismatch, this paper proposes three parallel algorithms based on CUDA model, namely, thread-level parallel algorithm, two-level parallel algorithm, and two-level parallel optimization algorithm. The two-level parallel optimization algorithm makes use of the powerful parallel processing ability of GPU to balance the load of each thread and reduces the number of times each thread accesses the data in the global memory by using the memory model of GPU. In this paper, real DNA sequences are used as experimental data to evaluate the performance of the algorithm. The experimental results show that, The execution time of the two-stage parallel optimization algorithm on GPU can reach 40-80 for the traditional CPU serial algorithm. The speedup variation is consistent with the theoretical analysis, and the speedup ratio of the other two algorithms can reach about 10. Finally, for the approximate string matching problem with k-difference, an efficient parallel algorithm is proposed by eliminating the dependency between the same row of data in the edit distance matrix based on dynamic programming. The algorithm uses a few thread synchronization times and has a high degree of parallelism. In this paper, the algorithm is implemented on GPU and multi-core CPU, and the speedup ratio of the algorithm is analyzed in the two environments. The experimental results show that, The execution time of the parallel algorithm on GPU can reach 7-12 for the traditional CPU serial algorithm, 1.3 for dual-core CPU and 8-13 for 24-core CPU. It is consistent with theoretical analysis.
【學(xué)位授予單位】:黑龍江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP338.6
【共引文獻(xiàn)】
相關(guān)期刊論文 前2條
1 鐘誠,宋彬;生物序列比對算法分析與比較[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
2 宋彬,陳國良,鄢超,沈一飛;多序列比對問題的并行近似算法[J];中國科學(xué)技術(shù)大學(xué)學(xué)報(bào);2005年05期
相關(guān)博士學(xué)位論文 前2條
1 王文奇;入侵檢測與安全防御協(xié)同控制研究[D];西北工業(yè)大學(xué);2006年
2 尹傳環(huán);結(jié)構(gòu)化數(shù)據(jù)核函數(shù)的研究[D];北京交通大學(xué);2008年
相關(guān)碩士學(xué)位論文 前6條
1 羅程;基于核聚類和序列分析的網(wǎng)絡(luò)入侵檢測方法的研究[D];廣西大學(xué);2005年
2 王少飛;數(shù)字圖像壓縮算法的并行化方法研究[D];山東師范大學(xué);2008年
3 何偉;使用隨機(jī)投影技術(shù)發(fā)現(xiàn)生物序列特征的算法[D];鄭州大學(xué);2002年
4 范立新;用位并行法進(jìn)行過濾的中文近似串匹配算法[D];浙江大學(xué);2006年
5 郭海濤;用加強(qiáng)的后綴數(shù)組查找MUM[D];西安電子科技大學(xué);2007年
6 范大娟;異構(gòu)機(jī)群系統(tǒng)上單模式單正文串近似串匹配并行算法研究[D];廣西大學(xué);2007年
本文編號:2270790
本文鏈接:http://www.sikaile.net/kejilunwen/jisuanjikexuelunwen/2270790.html