基于嵌入式的電動(dòng)汽車(chē)電池管理系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文選題:電動(dòng)汽車(chē) + 電池管理系 ; 參考:《武漢理工大學(xué)》2012年碩士論文
【摘要】:隨著環(huán)境保護(hù)和能源危機(jī)等壓力的日益增大,電動(dòng)汽車(chē)因其節(jié)能、環(huán)保、低噪音和能源來(lái)源多樣性等特點(diǎn),逐漸成為汽車(chē)工業(yè)領(lǐng)域的一個(gè)重要組成部分和發(fā)展方向。而電動(dòng)汽車(chē)動(dòng)力電池的電池管理系統(tǒng)作為電動(dòng)汽車(chē)的核心部件,也成為了電動(dòng)汽車(chē)領(lǐng)域的一個(gè)研究重點(diǎn)。電池管理系統(tǒng)(Battery Management System, BMS)通過(guò)對(duì)動(dòng)力電池總電壓、總電流、單體電壓、溫度和絕緣電阻等物理參數(shù)的實(shí)時(shí)測(cè)量以及控制,實(shí)現(xiàn)對(duì)動(dòng)力電池的實(shí)時(shí)監(jiān)控,為電動(dòng)汽車(chē)穩(wěn)定安全運(yùn)行提供保障,同時(shí)也是提高動(dòng)力電池的使用效率和使用壽命的保證。 本文分析了國(guó)內(nèi)外電池管理系統(tǒng)的研究現(xiàn)狀,詳細(xì)研究了電池管理系統(tǒng)功能和結(jié)構(gòu),針對(duì)集中式電池管理系統(tǒng)結(jié)構(gòu)上存在的問(wèn)題,提出了更具有通用性和靈活性的集散式電池管理系統(tǒng)架構(gòu),并設(shè)計(jì)了一款基于嵌入式的電動(dòng)汽車(chē)電池管理系統(tǒng),實(shí)現(xiàn)對(duì)電池電荷容量實(shí)時(shí)準(zhǔn)確估計(jì)和對(duì)電池的安全維護(hù)。 在硬件上,采用了模塊化的設(shè)計(jì)原則,將電池管理系統(tǒng)的主體結(jié)構(gòu)分為3個(gè)部分,即主控部分、高壓采集部分和單體電控部分,分別實(shí)現(xiàn)主體控制、高壓采集和單體采集控制的功能,提高了整體系統(tǒng)的靈活性。對(duì)與每個(gè)部分功能的實(shí)現(xiàn),論文給出了各個(gè)子功能模塊的設(shè)計(jì)與實(shí)現(xiàn)。 在軟件上,采用了層次化和模塊化的設(shè)計(jì)原則,同樣將電池管理系統(tǒng)分為3個(gè)部分的結(jié)構(gòu)進(jìn)行設(shè)計(jì),并在每個(gè)部分的軟件設(shè)計(jì)中實(shí)現(xiàn)了層次化管理。針對(duì)CAN通信軟件設(shè)計(jì)以及動(dòng)力電池剩余電荷狀態(tài)(State of Charge, SOC)的估算算法,采用了3個(gè)分離的CAN總線通信的方式,實(shí)現(xiàn)電池管理系統(tǒng)內(nèi)部和外部的通信;采用了多種SOC算法結(jié)合的方式,實(shí)現(xiàn)對(duì)電池SOC的估計(jì)。 通過(guò)實(shí)際的測(cè)試表明,基于嵌入式的電動(dòng)汽車(chē)電池管理系統(tǒng)的通用性、靈活性、數(shù)據(jù)采集精度、SOC估算精度、抗干擾能力、安全管理策略以及系統(tǒng)能源消耗等均達(dá)到設(shè)計(jì)標(biāo)準(zhǔn),并在多家汽車(chē)廠家及研究院進(jìn)行了裝車(chē)測(cè)試,整車(chē)運(yùn)行良好,穩(wěn)定可靠。
[Abstract]:With the increasing pressure of environmental protection and energy crisis, electric vehicle (EV) has become an important part and development direction of automotive industry because of its characteristics of energy saving, environmental protection, low noise and diversity of energy sources.As the core component of electric vehicle, battery management system of electric vehicle power battery has become a research focus in electric vehicle field.Battery management system Battery Management system (BMS) realizes real-time monitoring of power battery through real-time measurement and control of physical parameters such as total voltage, total current, single voltage, temperature and insulation resistance, etc.It provides a guarantee for the stable and safe operation of electric vehicles, and it is also a guarantee to improve the efficiency and service life of power batteries.In this paper, the research status of battery management system at home and abroad is analyzed, and the function and structure of battery management system are studied in detail, aiming at the problems existing in the structure of centralized battery management system.A more versatile and flexible distributed battery management system architecture is proposed, and an embedded battery management system for electric vehicles is designed to estimate the battery charge capacity in real time and accurately and safely maintain the battery.The main structure of the battery management system is divided into three parts: the main control part, the high voltage acquisition part and the single electric control part.The functions of high voltage acquisition and single acquisition control improve the flexibility of the whole system.For the realization of each function, the design and implementation of each sub-function module are given in this paper.In the software, the hierarchical and modular design principles are adopted, the battery management system is also divided into three parts of the structure to design, and in each part of the software design to achieve hierarchical management.Aiming at the design of CAN communication software and the estimation algorithm of the residual charge state of power cell, three separate CAN bus communication methods are adopted to realize the internal and external communication of battery management system.A variety of SOC algorithms are used to realize the estimation of battery SOC.The test results show that the battery management system based on embedded system can meet the design standards, such as generality, flexibility, precision of data acquisition, precision of SOC estimation, anti-jamming ability, safety management strategy and energy consumption of the system.And carried on the loading test in many automobile factories and the research institute, the entire vehicle runs well, the stability is reliable.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TP368.1;TP315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高錦秀,翟俊祥,周曉華,曹全喜;遲滯比較器在蓄電池備用電源中的應(yīng)用[J];半導(dǎo)體技術(shù);2001年06期
2 李紅林,張承寧,孫逢春,李軍求,張旺;鋰離子電池組均衡充電和保護(hù)系統(tǒng)研究[J];北京理工大學(xué)學(xué)報(bào);2004年03期
3 符曉玲;商云龍;崔納新;;電動(dòng)汽車(chē)電池管理系統(tǒng)研究現(xiàn)狀及發(fā)展趨勢(shì)[J];電力電子技術(shù);2011年12期
4 秦祖蔭;霍爾電流傳感器的性能及其使用[J];電力電子技術(shù);1994年04期
5 魯光輝;;霍爾電流傳感器的性能及應(yīng)用[J];四川文理學(xué)院學(xué)報(bào);2007年02期
6 岳仁超;王艷;;電池管理系統(tǒng)的設(shè)計(jì)[J];低壓電器;2010年11期
7 雷晶晶;李秋紅;陳立寶;張金頂;王太宏;;動(dòng)力鋰離子電池管理系統(tǒng)的研究進(jìn)展[J];電源技術(shù);2010年11期
8 李素雙;齊鉑金;吳紅杰;;電池管理系統(tǒng)溫度管理模塊的設(shè)計(jì)與實(shí)現(xiàn)[J];工業(yè)控制計(jì)算機(jī);2007年01期
9 梁桂祥;蓄電池組單個(gè)電池電壓測(cè)量方法[J];湖南電力;2005年03期
10 程艷青;高明煜;;基于卡爾曼濾波的電動(dòng)汽車(chē)剩余電量估計(jì)[J];杭州電子科技大學(xué)學(xué)報(bào);2009年03期
相關(guān)博士學(xué)位論文 前1條
1 曹萬(wàn)科;CAN協(xié)議車(chē)載網(wǎng)絡(luò)若干關(guān)鍵理論研究[D];東北大學(xué);2008年
相關(guān)碩士學(xué)位論文 前3條
1 吳建平;純電動(dòng)汽車(chē)電池管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];南昌大學(xué);2010年
2 宋建軍;基于神經(jīng)網(wǎng)絡(luò)的鎳氫電池容量預(yù)測(cè)及智能充電[D];燕山大學(xué);2006年
3 呂強(qiáng);直流系統(tǒng)絕緣檢測(cè)設(shè)計(jì)與實(shí)現(xiàn)及故障診斷專家系統(tǒng)研究[D];河海大學(xué);2007年
,本文編號(hào):1762486
本文鏈接:http://www.sikaile.net/kejilunwen/jisuanjikexuelunwen/1762486.html