AP1000核電主管道316LN奧氏體不銹鋼熱變形過程的組織演變模擬
本文選題:核電主管道 + 熱鍛 ; 參考:《北京科技大學》2015年博士論文
【摘要】:超低碳控氮316LN奧氏體不銹鋼,因其具有良好的加工性能、較好的力學性能和耐晶間應力腐蝕性能,在第三代壓水堆AP1000核電站中作為一回路主管道材料,是核一級關鍵裝備材料。然而,AP1000主管道設計由二代、二代加的不銹鋼分段鑄件焊接改為不銹鋼整體鍛造,制造難度堪稱目前世界核電主管道之最。主管道冷段與熱段作為超大型鍛件,其工藝要同時滿足成形與組織控制的目標,其中晶粒度控制是重點。因而,對316LN奧氏體不銹鋼在熱變形過程中的微觀組織演變行為進行較系統(tǒng)的研究,對晶粒變化規(guī)律進行模擬,掌握工藝-組織關系規(guī)律,可預測實際鍛造過程中的晶粒變化,并且為主管道制備工藝的優(yōu)化提供依據(jù),對微觀組織調(diào)控技術的發(fā)展有著重要的意義。 本文采用Gleeble熱模擬實驗和物理冶金模型計算相結合的方法,系統(tǒng)研究了316LN在鍛造過程中的晶粒演變規(guī)律以及組織模擬技術。 在Gleeble3500熱力模擬試驗機上,采用單道次軸向熱壓縮實驗研究了316LN不銹鋼的高溫流變行為,用以模擬其高溫鍛造過程;趯嶒灁(shù)據(jù),引入Zener-Hollomon參數(shù),建立了Arrhenius型唯象本構方程,用以描述316LN奧氏體不銹鋼熱變形過程中應變速率、形變溫度與應力應變關系。在此基礎上,獲得了316LN動態(tài)再結晶晶粒尺寸演變的經(jīng)驗公式,可以預測一定工藝條件下的鍛造組織的晶粒度。 通過對熱模擬試樣高溫淬火后顯微組織的研究分析,觀察了不同形變參數(shù)下樣品的微觀組織,結果表明在關鍵性的最后一火次鍛造時,在316LN奧氏體不銹鋼的鍛造工藝條件允許的情況下,應盡可能使用較大的壓下量,使其充分發(fā)生動態(tài)再結晶,以獲得細化的奧氏體組織。鍛造溫度在1273K-1423K之間,應變速率在0.1s-1數(shù)量級,可以獲得完全動態(tài)再結晶組織,晶粒尺寸在10μm~15μm范圍,遠小于AP1000核電主管道所要求的二級晶粒度的尺寸。本文還探討了316LN奧氏體不銹鋼的形變、動態(tài)回復、動態(tài)再結晶的相互作用,研究了動態(tài)再結晶的形核機制,為建立基于物理冶金原理的模型提供了理論依據(jù)。 由于Arrhenius型唯象型本構方程作為經(jīng)驗模型,普適度欠佳,為了更好地預測316LN奧氏體不銹鋼的晶粒變化,建立了以物理冶金原理為基礎,綜合化學成分、形變和再結晶微觀組織演變的熱變形奧氏體再結晶模型。模型包括關鍵的計算模塊包括位錯密度模塊、形核模塊、再結晶和析出模塊,以及工藝輸入模塊,常量模塊及合金成分輸入模塊等輔助部分。通過對模型參數(shù)的調(diào)整,預測316LN奧氏體不銹鋼熱鍛在不同形變條件下的流變應力行為和再結晶行為,并將模擬所得的晶粒尺寸結果與Gleeble熱模擬試驗所得的晶粒尺寸結果進行對比,兩者吻合較好,從而驗證了所建微觀組織模型的可靠性。 此外,利用該物理冶金模型還對具有碳氮化物析出的含Nb微合金鋼的熱變形行為進行了預測,通過輸入不同鋼的成分、本征常量以及變形工藝,進行調(diào)試,同Gleeble熱模擬試驗的結果進行對比驗證,模擬結果與實驗值符合較好,表明該模型可以運用于不同的鋼種,具有較好的普適性。
[Abstract]:The ultra - low carbon nitrogen - controlled 316LN austenitic stainless steel is a key equipment material at the nuclear level because of its good processing performance , good mechanical property and intergranular stress corrosion resistance . However , the design of the main pipeline in the third generation PWR AP1000 nuclear power plant is the primary key equipment material . However , the design of the main pipeline in the third generation PWR AP1000 nuclear power plant is the primary key equipment material . However , the main pipeline cooling section and the hot section of the 316LN austenitic stainless steel are used as the super - large forgings . The grain size control is the key point . Therefore , it is important for the development of the microstructure control technology to provide the basis for the optimization of the preparation process of 316LN austenitic stainless steel .
In this paper , Gleeble heat simulation experiment and physical metallurgy model are used to calculate the grain evolution law and tissue simulation technology of 316LN in forging process .
The high temperature rheological behavior of 316LN stainless steel is studied by single - pass axial thermal compression test on Gleeble 3500 thermal simulation testing machine . Based on the experimental data , the Zener - Holden parameter is introduced to describe the relationship between strain rate , deformation temperature and stress strain in 316LN austenitic stainless steel thermal deformation process . Based on the experimental data , the empirical formula of the size evolution of 316LN dynamic recrystallization grain is obtained , and the grain size of forged tissue under certain process conditions can be predicted .
The microstructure of specimens under different deformation parameters is studied by the study of microstructure of hot - simulated specimens after high temperature quenching . The results show that , under the condition that the forging process conditions of 316LN austenitic stainless steel are permitted under the condition of forging process conditions of 316LN austenitic stainless steel , it is possible to obtain complete dynamic recrystallization structure with grain size of 10 渭m ~ 15 渭m , which is far less than the secondary grain size required by AP1000 nuclear power main pipeline . The nucleation mechanism of dynamic recrystallization is studied , which provides the theoretical basis for the establishment of the model based on the principle of physical metallurgy .
The model includes dislocation density module , nucleation module , recrystallization and precipitation module , process input module , constant module and alloy component input module . The model includes the key calculation module including dislocation density module , nucleation module , recrystallization and precipitation module , process input module , constant module and alloy component input module .
In addition , the thermal deformation behavior of Nb - containing microalloy steel with carbon nitride precipitation is predicted by using the physical metallurgy model . By inputting the composition , the intrinsic constant and the deformation process of different steels , the simulation results are compared with the results of the Gleeble thermal simulation test , and the simulation results are in good agreement with the experimental values , indicating that the model can be applied to different steel types , and has good universality .
【學位授予單位】:北京科技大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG142.71
【參考文獻】
相關期刊論文 前10條
1 竇曉峰,鹿守理,趙輝;Q235低碳鋼靜態(tài)再結晶模型的建立[J];北京科技大學學報;1999年01期
2 竇曉峰,鹿守理,趙輝;Q235鋼動態(tài)再結晶模型的建立[J];北京科技大學學報;1998年05期
3 G.R.Ebrahimi;H.Keshmiri;A.R.Maldar;A.Momeni;;Dynamic Recrystallization Behavior of 13%Cr Martensitic Stainless Steel under Hot Working Condition[J];Journal of Materials Science & Technology;2012年05期
4 張棟;;世界核電發(fā)展及對我國的啟示[J];能源技術經(jīng)濟;2010年12期
5 桂運平,趙所琛;輕水堆核電站—回路管道事故分析及對策[J];動力工程;1986年06期
6 郭會光,張巧麗,陳慧琴;大鍛件熱成形的現(xiàn)代集成研究方法[J];大型鑄鍛件;2003年02期
7 孫鳳先;馬慶賢;;AP1000主管道控制鍛造工藝探索[J];大型鑄鍛件;2010年04期
8 祖玉杰;1Cr18Ni9Ti不銹鋼的鍛造[J];鍛壓裝備與制造技術;2003年04期
9 曲錦波,王昭東,劉相華,王國棟,薛貴軍,曹剛,陳奎凡,徐建國;HSLA鋼板控軋控冷生產(chǎn)中組織性能的預測模型[J];鋼鐵;1999年01期
10 趙輝,鹿守理,竇曉峰,高英;低碳鋼軋后冷卻過程中的晶粒長大模型[J];鋼鐵;1999年02期
,本文編號:1918350
本文鏈接:http://www.sikaile.net/kejilunwen/jinshugongy/1918350.html