天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 海洋學(xué)論文 >

黃東海沉積物中還原無機(jī)硫的形態(tài)特征及影響因素研究

發(fā)布時(shí)間:2018-07-16 07:48
【摘要】:陸架海沉積物是有機(jī)質(zhì)沉積和礦化的重要場所,也是早期成巖過程中能量轉(zhuǎn)化和物質(zhì)循環(huán)的重要載體。在有機(jī)質(zhì)的早期成巖過程中,硫酸鹽還原作用極為重要。據(jù)估計(jì),硫酸鹽還原對有機(jī)質(zhì)礦化的貢獻(xiàn)高達(dá)50%。陸架沉積環(huán)境也是硫鐵礦形成和埋藏的重要場所。硫和鐵的早期成巖直接影響海洋沉積物中C、P以及微量元素的循環(huán),具有重要的地球化學(xué)意義。另外,養(yǎng)殖結(jié)構(gòu)的不同也會影響硫化物的分布。反之,當(dāng)硫化物積累到一定程度時(shí),也會對養(yǎng)殖環(huán)境產(chǎn)生危害。本論文通過對黃東海以及桑溝灣沉積物中還原無機(jī)硫的形態(tài)特征及影響因素進(jìn)行研究,得出以下結(jié)論:1.黃海、東海以及桑溝灣沉積物中酸可揮發(fā)性硫(AVS)的含量范圍分別為0.01-17.14 μmol/g,0.01-25.02μmol/g和0.20-12.56μmol/g。其垂直分布表現(xiàn)為表層含量較低,隨深度的增加呈現(xiàn)先增加后降低的趨勢,并在5-20 cm之間出現(xiàn)峰值。東海T10站的AVS含量極低,可能與砂質(zhì)沉積有關(guān)。T02站的AVS含量隨深度的增加而增加,并沒有出現(xiàn)峰值,這可能是因?yàn)椴蓸由疃容^淺所致。三個(gè)區(qū)域元素硫(ES)的含量范圍分別為0.02-44.40 μmol/g,0.14-27.75 μmol/g和0.16-1.10 μmol/g。其在上層10 cm含量較低,之后隨深度的增加而增加。桑溝灣ES的整體水平較低,特別是在灣口區(qū)。三個(gè)區(qū)域黃鐵礦硫(pyrite-S)的含量范圍分別為0.61-113.1μmol/g,0.61-93.95 μmol/g和0.57-51.52 μmol/g。大部分站位上層5 cm的pyrite-S含量較低,然后隨深度的增加而增加。黃海、東海以及桑溝灣各站沉積物中pyrite-S含量占總還原無機(jī)硫(AVS+pyrite-S+ES)的比例分別為16.1-99.0%,22.0-97.7%和58.2-96.9%,其平均值分別為72.5%,64.7%和85.0%,是沉積物中還原無機(jī)硫的主要形態(tài)。桑溝灣鄰近的LDH和Wetland站的AVS含量較高,分別為264.72和191.64 μmol/g,且這兩個(gè)站的ES與pyrite-S之間存在明顯的正相關(guān)性(r=0.84,p0.05;n=37),表明pyrite-S的形成是以多硫化物途徑進(jìn)行。2.黃海、東海以及桑溝灣大部分站位AVS/pyrite-S的比值小于0.3,反映了AVS可以有效轉(zhuǎn)化為pyrite-S。東海的P01,T06,38以及35站的AVS/pyrite-S比值在30 cm和10 cm之間呈現(xiàn)連續(xù)增加的特征,指示了在此期間沉積環(huán)境向強(qiáng)還原環(huán)境或者向頻繁發(fā)生的低氧或者厭氧環(huán)境的轉(zhuǎn)變。而桑溝灣的ST1站(5 cm以下)和Wetland站由于缺乏ES,從而不利于AVS向pyrite-S的轉(zhuǎn)化。3.黃海、東海以及桑溝灣沉積物中活性鐵的含量范圍分別為11.44-175.50μmol/g,14.98-260.71 μmol/g和17.79-148.26 μmol/g,其平均值分別為71.78μmol/g,100.38 μmol/g和56.46±21.26μmol/g大部分站位的活性鐵含量高于黃鐵礦鐵(Fepy),且其黃鐵礦化度(DOP)小于0.6,反映了活性鐵含量不會限制黃鐵礦的形成。表層沉積物的DOP較低(0.2),低于正常海洋沉積物,但活性鐵的含量遠(yuǎn)高于黃鐵礦鐵(Fepy),并且在采樣深度范圍內(nèi)硫酸鹽含量沒有明顯虧損,表明黃鐵礦形成的限制因素不是活性鐵含量,而是硫化物,從本質(zhì)上講是活性有機(jī)質(zhì)的量。雖然黃海的C02和A08站的活性鐵含量較低,但pyrite-S的形成并沒有受到活性鐵含量的限制,說明這兩個(gè)站的黃鐵礦形成也受到硫化物含量的限制。A04站的活性鐵含量隨深度的增加下降幅度高達(dá)84.2%,在20cm以下,其DOP值高于0.65,反映了該站底層較低的活性鐵含量會限制pyritc-S的形成。另外,與桑溝灣相鄰的LDH以及Wetland站的活性鐵含量范圍為20.80-197.86 μmol/g,,其含量在上層15cm隨深度的增加而下降,之后則呈現(xiàn)逐漸增加的趨勢。LDH站的DOP隨深度的增加而增加,并且從7 cm開始已高于0.65,表明該站黃鐵礦的形成會受到活性鐵含量的限制。這可能是因?yàn)樵撜镜撞枯^高的硫酸鹽還原速率所致。4.黃海、東海以及桑溝灣沉積物孔隙水中的硫酸鹽含量較高,隨深度的增加沒有明顯的降低。與桑溝灣相鄰的LDH和Wetland站的硫酸鹽含量雖然較低,但沒有限制硫酸鹽還原。黃海、東海孔隙水硫酸鹽的擴(kuò)散通量范圍分別為0.05-0.57 mmol/m2/d和0.10-0.48 mmol/m2/d,并且隨離岸距離的增加呈現(xiàn)下降的趨勢。東海孔隙水硫酸鹽的擴(kuò)散通量同樣受硫酸鹽還原速率的影響。黃海、東海沉積物的硫酸鹽還原速率(SRR)范圍分別為1.06-8.85μM/d和2.00-40.60μM/d,并隨深度的增加呈現(xiàn)指數(shù)下降的趨勢。另外,SRR隨著TOC含量的增加而增加。黃海、東海沉積物上層28cm的硫酸鹽還原的積分速率范圍分別為0.36-0.94 mmol/m2/d和0.91-4.34mmol/m2/d,硫酸鹽還原對有機(jī)質(zhì)礦化的貢獻(xiàn)分別為12.8-42.7%和36.8-60.2%,表明了硫酸鹽還原是黃東海沉積物中有機(jī)質(zhì)礦化的重要途徑。桑溝灣沉積物的SRR為1.89 mmol/m2/d,其對有機(jī)質(zhì)礦化的貢獻(xiàn)為42.1%,Wetland站的SRR為3.22 mmol/m2/d,其對有機(jī)質(zhì)礦化的貢獻(xiàn)為20.7%。5.桑溝灣沉積物中的還原無機(jī)硫含量和近底層海水溶解氧呈現(xiàn)明顯的負(fù)相關(guān)性,但與有機(jī)質(zhì)含量呈現(xiàn)正相關(guān)性,且還原無機(jī)硫也受到了不同養(yǎng)殖類型的影響。扇貝單養(yǎng)區(qū)以及扇貝與海帶混養(yǎng)區(qū)的有機(jī)質(zhì)含量高于海帶養(yǎng)殖區(qū),導(dǎo)致了扇貝單養(yǎng)區(qū)以及扇貝與海帶混養(yǎng)區(qū)的還原無機(jī)硫含量較高。與牡蠣單養(yǎng)區(qū)相比,扇貝與海帶混養(yǎng)區(qū)較低的有機(jī)質(zhì)及還原無機(jī)硫含量顯示了混養(yǎng)模式的環(huán)境優(yōu)越性?傊,多年的養(yǎng)殖并沒有對桑溝灣的硫化物積累以及底棲環(huán)境產(chǎn)生明顯的影響。
[Abstract]:The continental shelf sediments are an important place for the deposition and mineralization of organic matter and an important carrier of energy conversion and material circulation during early diagenesis. Sulfate reduction is very important in the early diagenesis of organic matter. It is estimated that the contribution of sulfate reduction to the mineralization of organic matter is higher than that of the 50%. shelf sedimentary environment as well as pyrite. The early diagenesis of sulfur and iron directly affects the circulation of C, P and trace elements in marine sediments, which has important geochemical significance. In addition, the difference in the structure of aquaculture will also affect the distribution of sulfide. Conversely, when sulphides accumulate to a certain range, the culture environment will also be harmful. After studying the morphological characteristics and influencing factors of the reduction of inorganic sulfur in the sediments of Huang Donghai and Sangou Bay, the following conclusions are drawn: 1. the content range of acid volatile sulfur (AVS) in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 0.01-17.14 mol/g, and the vertical distribution of 0.01-25.02 mu mol/g and 0.20-12.56 mu mol/g. is shown as the surface layer. The content of the.T02 station in the East China Sea is very low. The content of AVS in the East China Sea T10 station is very low, and the AVS content of the.T02 station in the sand deposit may increase with the increase of depth, and there is no peak value. This may be caused by the shallow mining depth. The content of the elemental sulfur (ES) in the 5-20 regions is probably contained. The range of quantity is 0.02-44.40 mu mol/g, 0.14-27.75 mu mol/g and 0.16-1.10 mu mol/g. are lower in the upper 10 cm, and then increase with the depth. The overall level of San Gou Bay ES is low, especially in the bay mouth area. The content range of pyrite sulphur (pyrite-S) in the three regions is divided into 0.61-113.1 um mol/g, 0.61-93.95 Muu The pyrite-S content of 5 cm on the upper level of.52 mu mol/g. is low, and then increases with the depth. The proportion of pyrite-S content in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 16.1-99.0%, 22.0-97.7% and 58.2-96.9%, respectively, 72.5%, 64.7% and 85%, respectively. The main forms of the reduction of inorganic sulfur. The AVS content of the LDH and Wetland stations adjacent to Sangou Bay is 264.72 and 191.64 mu mol/g, respectively, and there is a significant positive correlation between ES and pyrite-S at the two stations (r=0.84, P0.05; n=37), indicating that the formation of pyrite-S is based on the majority of sulfides in.2. the Yellow Sea, the East China Sea, and Sangou Bay. The ratio of the station AVS/pyrite-S is less than 0.3, reflecting that AVS can be effectively converted into P01 in the East China Sea, and the AVS/pyrite-S ratio of T06,38 and 35 stations increases continuously between 30 cm and 10 cm, indicating the transition from the sedimentary environment to the strong reduction environment or to the frequently occurring hypoxic or anaerobic environment during this period. The ST1 station (5 cm) and Wetland station in the Bay lack ES, which is unfavorable to the conversion of AVS to pyrite-S in.3. the Yellow Sea, and the content range of active iron in the sediments of the East China Sea and Sangou Bay is 11.44-175.50 u mol/g, 14.98-260.71, mol/g and 17.79-148.26 muon. The average value is 71.78 mu, 100.38 Mu and 56.46 + 21.26 micron. The content of active iron in most sites of l/g is higher than that of pyrite iron (Fepy), and its pyrite mineralization degree (DOP) is less than 0.6, which reflects that the content of active iron does not restrict the formation of pyrite. The DOP of the surface sediments is lower (0.2), lower than that of normal marine sediments, but the content of active iron is much higher than that of pyrite iron (Fepy), and sulphuric acid is in the range of sampling depth. There is no obvious loss of salt content, indicating that the limiting factor of pyrite formation is not the content of active iron, but the amount of active organic matter in essence. Although the content of active iron in the C02 and A08 stations in the Yellow Sea is low, the formation of pyrite-S is not limited by the content of active iron, indicating that the formation of pyrite in these two stations is also subject to the formation of pyrite. The content of sulfide content is limited to 84.2% of the active iron content of.A04 station with the increase of depth, which is below 20cm, and its DOP value is higher than 0.65. It shows that the low active iron content at the bottom of the station will limit the formation of pyritc-S. In addition, the content of active iron in LDH and Wetland station adjacent to Sangou Bay is 20.80-197.86 u mol/g. The amount of 15cm in the upper layer decreases with the increase of depth, and then the DOP of the.LDH station increases with the increase of depth, and is higher than 0.65 from 7 cm, indicating that the formation of pyrite at this station will be restricted by the content of active iron. This may be due to the high sulfate reduction rate at the bottom of the station, which is caused by.4. the Yellow Sea, east of the station. The sulphate content in the pore water of the sea and Sangou Bay is higher than the depth. The sulfate content of the LDH and Wetland stations adjacent to Sangou Bay is low, but the sulfate reduction is not limited. The diffusion flux of sulphate in the pore water of the East China Sea is 0.05-0.57 mmol/m2/d and 0.10-0.48 MMO, respectively. L/m2/d, and the increase of the distance from the shore presents a downward trend. The diffusion flux of sulfate in the pore water of the East China Sea is also affected by the rate of sulfate reduction. The sulphate reduction rate (SRR) of the sediments in the East China Sea is 1.06-8.85 M/d and 2.00-40.60 M/d respectively, and presents an exponential decline with the increase of the depth. In addition, SRR is followed by SRR. With the increase of TOC content, the integral rate range of sulfate reduction of 28cm in the upper layer of the East China Sea is 0.36-0.94 mmol/m2/d and 0.91-4.34mmol/m2/d respectively. The contribution of sulfate reduction to organic matter mineralization is 12.8-42.7% and 36.8-60.2% respectively, indicating that sulfate is also important for the mineralization of organic matter in the Huang Donghai sediments. The SRR of Sangou Bay is 1.89 mmol/m2/d, and its contribution to the mineralization of organic matter is 42.1% and the SRR of the Wetland station is 3.22 mmol/m2/d. The contribution of the sediment to the mineralization of organic matter is a significant negative correlation between the reduced inorganic sulfur content in the sediment of 20.7%.5. Sangou Bay and the dissolved oxygen in the near bottom sea water, but it has a positive correlation with the organic matter content. The organic matter in the scallop single breeding area and the scallop and the kelp mixed area is higher than that of the marine aquaculture area, which leads to the higher reduction inorganic sulfur content in the scallop single breeding area and the scallop and the Laminaria mixed zone. Compared with the oyster single breeding area, the lower organic matter in the scallop and the kelp mixed zone is lower. And the reduction of inorganic sulfur content showed the environmental superiority of the mixed culture model. In a word, years of aquaculture did not have a significant effect on the accumulation of sulfides and the benthic environment in Sangou Bay.
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:P736.41

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫炳寅,經(jīng)美德;廢黃河口鹽沼土硫酸鹽還原速率的研究[J];應(yīng)用生態(tài)學(xué)報(bào);1990年03期

2 馬忠友;鄧盾;汪建飛;謝越;;一組混合菌群還原硫酸鹽的特性[J];中國農(nóng)學(xué)通報(bào);2013年08期

3 曾景海;吳曉磊;趙桂芳;錢易;;油田回注水中硫酸鹽還原原核生物的快速檢測和群落結(jié)構(gòu)分析[J];環(huán)境科學(xué);2006年05期

4 尹希杰;周懷陽;楊群慧;孫治雷;;珠江口淇澳島海岸帶沉積物中硫酸鹽還原和不同形態(tài)硫的分布[J];海洋學(xué)報(bào)(中文版);2010年03期

5 康寧,倫世儀;硫酸鹽還原一甲烷化兩相厭氧消化系統(tǒng)運(yùn)行工藝條件的研究[J];工業(yè)微生物;1996年03期

6 徐慧緯;張旭;李立明;鄭光潔;李廣賀;;不同基質(zhì)條件下透性處理對脫硫弧菌硫酸鹽還原活性的影響[J];環(huán)境科學(xué);2013年01期

7 高樹兵;Thomas J.Lyimo;Arjan Pol;Huub J.M.Op den Camp;;坦桑尼亞姆托尼地區(qū)紅樹林沉積物中的硫酸鹽還原和甲烷生成作用[J];AMBIO-人類環(huán)境雜志;2002年Z1期

8 施春華,顏佳新,韓欣;早期成巖作用過程中硫酸鹽還原反應(yīng)研究進(jìn)展[J];廣西地質(zhì);2001年01期

9 張文存;吳耀國;吉青杰;王衛(wèi);;硫酸鹽還原條件下苯胺生物降解的研究[J];環(huán)境研究與監(jiān)測;2005年01期

10 尹希杰;陳堅(jiān);郭瑩瑩;孫治雷;邵長偉;;九龍江河口沉積物中硫酸鹽還原與甲烷厭氧氧化:同位素地球化學(xué)證據(jù)[J];海洋學(xué)報(bào)(中文版);2011年04期

相關(guān)會議論文 前4條

1 陳家輝;商U_;陳光浩;;以甲烷為單一碳源的脫氮及硫酸鹽還原[A];2011中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第二卷)[C];2011年

2 丁海;姚素平;陳駿;;重金屬離子對混合SRB菌群的硫酸鹽還原速率抑制研究[A];中國礦物巖石地球化學(xué)學(xué)會第14屆學(xué)術(shù)年會論文摘要專輯[C];2013年

3 田濤;張代鈞;李玉蓮;孫陶陶;何強(qiáng);;重慶園博園龍景湖水體硫酸鹽還原及氮化物和TOC的影響[A];2014中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第五章)[C];2014年

4 趙本良;仇榮亮;劉金芩;黃雄飛;李清飛;王詩忠;石寧;;一株硫酸鹽還原細(xì)菌的篩選及其功能研究[A];第十次全國環(huán)境微生物學(xué)術(shù)研討會論文摘要集[C];2007年

相關(guān)重要報(bào)紙文章 前2條

1 蕭蓮;在高溫季節(jié)應(yīng)適當(dāng)補(bǔ)施磷肥和氮肥[N];東方城鄉(xiāng)報(bào);2010年

2 倪永華;鐵管道腐蝕之謎揭開[N];科技日報(bào);2004年

相關(guān)博士學(xué)位論文 前9條

1 陳明翔;Desulfovibrio sp. CMX還原煙氣脫硫脫硝絡(luò)合溶液過程特性研究[D];大連理工大學(xué);2015年

2 徐熙俊;微氧碳氮硫共脫除工藝的運(yùn)行效能及數(shù)學(xué)模擬[D];哈爾濱工業(yè)大學(xué);2015年

3 遠(yuǎn)野;廢水碳氮硫污染物共脫除工藝調(diào)拉與生物硫回收參數(shù)優(yōu)化[D];哈爾濱工業(yè)大學(xué);2015年

4 周杰民;嗜鹽嗜堿微生物法煙氣處理的基礎(chǔ)研究[D];中國科學(xué)院研究生院(過程工程研究所);2015年

5 康緒明;黃東海沉積物中還原無機(jī)硫的形態(tài)特征及影響因素研究[D];中國海洋大學(xué);2015年

6 趙陽國;生態(tài)因子對硫酸鹽還原系統(tǒng)中微生物群落動態(tài)影響的表征[D];哈爾濱工業(yè)大學(xué);2006年

7 馮穎;硫酸鹽還原菌與Fe~0協(xié)同處理含重金屬酸性廢水的研究[D];天津大學(xué);2004年

8 李巍;廢水同步生物脫氮除硫特性與效能研究[D];哈爾濱工業(yè)大學(xué);2008年

9 夏芳芳;垃圾生物覆蓋土對填埋氣中H_2S的凈化作用及機(jī)理研究[D];浙江大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 徐巖;基于遺傳神經(jīng)網(wǎng)絡(luò)的產(chǎn)酸—硫酸鹽還原系統(tǒng)建模研究[D];哈爾濱理工大學(xué);2007年

2 喬佳妮;水稻土硫酸鹽還原作用對多氯聯(lián)苯消減的影響研究[D];浙江大學(xué);2014年

3 侯丹丹;硫酸鹽還原相反應(yīng)器研究[D];西安工程大學(xué);2011年

4 張璐;膠州灣沉積物中硫酸鹽還原和鐵異化還原的影響因素研究[D];中國海洋大學(xué);2014年

5 畢建培;硫酸鹽還原與反硝化脫硫工藝耦合及碳氮硫去除效能研究[D];哈爾濱工業(yè)大學(xué);2009年

6 唐紅玲;微生物煙氣脫硫系統(tǒng)中硫酸鹽生物還原過程研究[D];江南大學(xué);2008年

7 劉一威;不同工藝條件下硫酸鹽還原反應(yīng)器微生物群落動態(tài)分析[D];哈爾濱工業(yè)大學(xué);2006年

8 桂冠;脫硫腸狀菌的培養(yǎng)及還原硫酸鹽的試驗(yàn)研究[D];武漢理工大學(xué);2013年

9 張照韓;反硝化抑制硫酸鹽還原菌活性試驗(yàn)研究[D];哈爾濱工程大學(xué);2007年

10 李放;硫酸鹽還原菌株(Desulfovibrio desulfuricans)去除酸性廢水中重金屬離子研究[D];合肥工業(yè)大學(xué);2012年



本文編號:2125728

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/haiyang/2125728.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶543cd***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com