黃東海沉積物中還原無機(jī)硫的形態(tài)特征及影響因素研究
[Abstract]:The continental shelf sediments are an important place for the deposition and mineralization of organic matter and an important carrier of energy conversion and material circulation during early diagenesis. Sulfate reduction is very important in the early diagenesis of organic matter. It is estimated that the contribution of sulfate reduction to the mineralization of organic matter is higher than that of the 50%. shelf sedimentary environment as well as pyrite. The early diagenesis of sulfur and iron directly affects the circulation of C, P and trace elements in marine sediments, which has important geochemical significance. In addition, the difference in the structure of aquaculture will also affect the distribution of sulfide. Conversely, when sulphides accumulate to a certain range, the culture environment will also be harmful. After studying the morphological characteristics and influencing factors of the reduction of inorganic sulfur in the sediments of Huang Donghai and Sangou Bay, the following conclusions are drawn: 1. the content range of acid volatile sulfur (AVS) in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 0.01-17.14 mol/g, and the vertical distribution of 0.01-25.02 mu mol/g and 0.20-12.56 mu mol/g. is shown as the surface layer. The content of the.T02 station in the East China Sea is very low. The content of AVS in the East China Sea T10 station is very low, and the AVS content of the.T02 station in the sand deposit may increase with the increase of depth, and there is no peak value. This may be caused by the shallow mining depth. The content of the elemental sulfur (ES) in the 5-20 regions is probably contained. The range of quantity is 0.02-44.40 mu mol/g, 0.14-27.75 mu mol/g and 0.16-1.10 mu mol/g. are lower in the upper 10 cm, and then increase with the depth. The overall level of San Gou Bay ES is low, especially in the bay mouth area. The content range of pyrite sulphur (pyrite-S) in the three regions is divided into 0.61-113.1 um mol/g, 0.61-93.95 Muu The pyrite-S content of 5 cm on the upper level of.52 mu mol/g. is low, and then increases with the depth. The proportion of pyrite-S content in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 16.1-99.0%, 22.0-97.7% and 58.2-96.9%, respectively, 72.5%, 64.7% and 85%, respectively. The main forms of the reduction of inorganic sulfur. The AVS content of the LDH and Wetland stations adjacent to Sangou Bay is 264.72 and 191.64 mu mol/g, respectively, and there is a significant positive correlation between ES and pyrite-S at the two stations (r=0.84, P0.05; n=37), indicating that the formation of pyrite-S is based on the majority of sulfides in.2. the Yellow Sea, the East China Sea, and Sangou Bay. The ratio of the station AVS/pyrite-S is less than 0.3, reflecting that AVS can be effectively converted into P01 in the East China Sea, and the AVS/pyrite-S ratio of T06,38 and 35 stations increases continuously between 30 cm and 10 cm, indicating the transition from the sedimentary environment to the strong reduction environment or to the frequently occurring hypoxic or anaerobic environment during this period. The ST1 station (5 cm) and Wetland station in the Bay lack ES, which is unfavorable to the conversion of AVS to pyrite-S in.3. the Yellow Sea, and the content range of active iron in the sediments of the East China Sea and Sangou Bay is 11.44-175.50 u mol/g, 14.98-260.71, mol/g and 17.79-148.26 muon. The average value is 71.78 mu, 100.38 Mu and 56.46 + 21.26 micron. The content of active iron in most sites of l/g is higher than that of pyrite iron (Fepy), and its pyrite mineralization degree (DOP) is less than 0.6, which reflects that the content of active iron does not restrict the formation of pyrite. The DOP of the surface sediments is lower (0.2), lower than that of normal marine sediments, but the content of active iron is much higher than that of pyrite iron (Fepy), and sulphuric acid is in the range of sampling depth. There is no obvious loss of salt content, indicating that the limiting factor of pyrite formation is not the content of active iron, but the amount of active organic matter in essence. Although the content of active iron in the C02 and A08 stations in the Yellow Sea is low, the formation of pyrite-S is not limited by the content of active iron, indicating that the formation of pyrite in these two stations is also subject to the formation of pyrite. The content of sulfide content is limited to 84.2% of the active iron content of.A04 station with the increase of depth, which is below 20cm, and its DOP value is higher than 0.65. It shows that the low active iron content at the bottom of the station will limit the formation of pyritc-S. In addition, the content of active iron in LDH and Wetland station adjacent to Sangou Bay is 20.80-197.86 u mol/g. The amount of 15cm in the upper layer decreases with the increase of depth, and then the DOP of the.LDH station increases with the increase of depth, and is higher than 0.65 from 7 cm, indicating that the formation of pyrite at this station will be restricted by the content of active iron. This may be due to the high sulfate reduction rate at the bottom of the station, which is caused by.4. the Yellow Sea, east of the station. The sulphate content in the pore water of the sea and Sangou Bay is higher than the depth. The sulfate content of the LDH and Wetland stations adjacent to Sangou Bay is low, but the sulfate reduction is not limited. The diffusion flux of sulphate in the pore water of the East China Sea is 0.05-0.57 mmol/m2/d and 0.10-0.48 MMO, respectively. L/m2/d, and the increase of the distance from the shore presents a downward trend. The diffusion flux of sulfate in the pore water of the East China Sea is also affected by the rate of sulfate reduction. The sulphate reduction rate (SRR) of the sediments in the East China Sea is 1.06-8.85 M/d and 2.00-40.60 M/d respectively, and presents an exponential decline with the increase of the depth. In addition, SRR is followed by SRR. With the increase of TOC content, the integral rate range of sulfate reduction of 28cm in the upper layer of the East China Sea is 0.36-0.94 mmol/m2/d and 0.91-4.34mmol/m2/d respectively. The contribution of sulfate reduction to organic matter mineralization is 12.8-42.7% and 36.8-60.2% respectively, indicating that sulfate is also important for the mineralization of organic matter in the Huang Donghai sediments. The SRR of Sangou Bay is 1.89 mmol/m2/d, and its contribution to the mineralization of organic matter is 42.1% and the SRR of the Wetland station is 3.22 mmol/m2/d. The contribution of the sediment to the mineralization of organic matter is a significant negative correlation between the reduced inorganic sulfur content in the sediment of 20.7%.5. Sangou Bay and the dissolved oxygen in the near bottom sea water, but it has a positive correlation with the organic matter content. The organic matter in the scallop single breeding area and the scallop and the kelp mixed area is higher than that of the marine aquaculture area, which leads to the higher reduction inorganic sulfur content in the scallop single breeding area and the scallop and the Laminaria mixed zone. Compared with the oyster single breeding area, the lower organic matter in the scallop and the kelp mixed zone is lower. And the reduction of inorganic sulfur content showed the environmental superiority of the mixed culture model. In a word, years of aquaculture did not have a significant effect on the accumulation of sulfides and the benthic environment in Sangou Bay.
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:P736.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫炳寅,經(jīng)美德;廢黃河口鹽沼土硫酸鹽還原速率的研究[J];應(yīng)用生態(tài)學(xué)報(bào);1990年03期
2 馬忠友;鄧盾;汪建飛;謝越;;一組混合菌群還原硫酸鹽的特性[J];中國農(nóng)學(xué)通報(bào);2013年08期
3 曾景海;吳曉磊;趙桂芳;錢易;;油田回注水中硫酸鹽還原原核生物的快速檢測和群落結(jié)構(gòu)分析[J];環(huán)境科學(xué);2006年05期
4 尹希杰;周懷陽;楊群慧;孫治雷;;珠江口淇澳島海岸帶沉積物中硫酸鹽還原和不同形態(tài)硫的分布[J];海洋學(xué)報(bào)(中文版);2010年03期
5 康寧,倫世儀;硫酸鹽還原一甲烷化兩相厭氧消化系統(tǒng)運(yùn)行工藝條件的研究[J];工業(yè)微生物;1996年03期
6 徐慧緯;張旭;李立明;鄭光潔;李廣賀;;不同基質(zhì)條件下透性處理對脫硫弧菌硫酸鹽還原活性的影響[J];環(huán)境科學(xué);2013年01期
7 高樹兵;Thomas J.Lyimo;Arjan Pol;Huub J.M.Op den Camp;;坦桑尼亞姆托尼地區(qū)紅樹林沉積物中的硫酸鹽還原和甲烷生成作用[J];AMBIO-人類環(huán)境雜志;2002年Z1期
8 施春華,顏佳新,韓欣;早期成巖作用過程中硫酸鹽還原反應(yīng)研究進(jìn)展[J];廣西地質(zhì);2001年01期
9 張文存;吳耀國;吉青杰;王衛(wèi);;硫酸鹽還原條件下苯胺生物降解的研究[J];環(huán)境研究與監(jiān)測;2005年01期
10 尹希杰;陳堅(jiān);郭瑩瑩;孫治雷;邵長偉;;九龍江河口沉積物中硫酸鹽還原與甲烷厭氧氧化:同位素地球化學(xué)證據(jù)[J];海洋學(xué)報(bào)(中文版);2011年04期
相關(guān)會議論文 前4條
1 陳家輝;商U_;陳光浩;;以甲烷為單一碳源的脫氮及硫酸鹽還原[A];2011中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第二卷)[C];2011年
2 丁海;姚素平;陳駿;;重金屬離子對混合SRB菌群的硫酸鹽還原速率抑制研究[A];中國礦物巖石地球化學(xué)學(xué)會第14屆學(xué)術(shù)年會論文摘要專輯[C];2013年
3 田濤;張代鈞;李玉蓮;孫陶陶;何強(qiáng);;重慶園博園龍景湖水體硫酸鹽還原及氮化物和TOC的影響[A];2014中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第五章)[C];2014年
4 趙本良;仇榮亮;劉金芩;黃雄飛;李清飛;王詩忠;石寧;;一株硫酸鹽還原細(xì)菌的篩選及其功能研究[A];第十次全國環(huán)境微生物學(xué)術(shù)研討會論文摘要集[C];2007年
相關(guān)重要報(bào)紙文章 前2條
1 蕭蓮;在高溫季節(jié)應(yīng)適當(dāng)補(bǔ)施磷肥和氮肥[N];東方城鄉(xiāng)報(bào);2010年
2 倪永華;鐵管道腐蝕之謎揭開[N];科技日報(bào);2004年
相關(guān)博士學(xué)位論文 前9條
1 陳明翔;Desulfovibrio sp. CMX還原煙氣脫硫脫硝絡(luò)合溶液過程特性研究[D];大連理工大學(xué);2015年
2 徐熙俊;微氧碳氮硫共脫除工藝的運(yùn)行效能及數(shù)學(xué)模擬[D];哈爾濱工業(yè)大學(xué);2015年
3 遠(yuǎn)野;廢水碳氮硫污染物共脫除工藝調(diào)拉與生物硫回收參數(shù)優(yōu)化[D];哈爾濱工業(yè)大學(xué);2015年
4 周杰民;嗜鹽嗜堿微生物法煙氣處理的基礎(chǔ)研究[D];中國科學(xué)院研究生院(過程工程研究所);2015年
5 康緒明;黃東海沉積物中還原無機(jī)硫的形態(tài)特征及影響因素研究[D];中國海洋大學(xué);2015年
6 趙陽國;生態(tài)因子對硫酸鹽還原系統(tǒng)中微生物群落動態(tài)影響的表征[D];哈爾濱工業(yè)大學(xué);2006年
7 馮穎;硫酸鹽還原菌與Fe~0協(xié)同處理含重金屬酸性廢水的研究[D];天津大學(xué);2004年
8 李巍;廢水同步生物脫氮除硫特性與效能研究[D];哈爾濱工業(yè)大學(xué);2008年
9 夏芳芳;垃圾生物覆蓋土對填埋氣中H_2S的凈化作用及機(jī)理研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 徐巖;基于遺傳神經(jīng)網(wǎng)絡(luò)的產(chǎn)酸—硫酸鹽還原系統(tǒng)建模研究[D];哈爾濱理工大學(xué);2007年
2 喬佳妮;水稻土硫酸鹽還原作用對多氯聯(lián)苯消減的影響研究[D];浙江大學(xué);2014年
3 侯丹丹;硫酸鹽還原相反應(yīng)器研究[D];西安工程大學(xué);2011年
4 張璐;膠州灣沉積物中硫酸鹽還原和鐵異化還原的影響因素研究[D];中國海洋大學(xué);2014年
5 畢建培;硫酸鹽還原與反硝化脫硫工藝耦合及碳氮硫去除效能研究[D];哈爾濱工業(yè)大學(xué);2009年
6 唐紅玲;微生物煙氣脫硫系統(tǒng)中硫酸鹽生物還原過程研究[D];江南大學(xué);2008年
7 劉一威;不同工藝條件下硫酸鹽還原反應(yīng)器微生物群落動態(tài)分析[D];哈爾濱工業(yè)大學(xué);2006年
8 桂冠;脫硫腸狀菌的培養(yǎng)及還原硫酸鹽的試驗(yàn)研究[D];武漢理工大學(xué);2013年
9 張照韓;反硝化抑制硫酸鹽還原菌活性試驗(yàn)研究[D];哈爾濱工程大學(xué);2007年
10 李放;硫酸鹽還原菌株(Desulfovibrio desulfuricans)去除酸性廢水中重金屬離子研究[D];合肥工業(yè)大學(xué);2012年
本文編號:2125728
本文鏈接:http://www.sikaile.net/kejilunwen/haiyang/2125728.html