防爆柴油機(jī)進(jìn)氣系統(tǒng)的優(yōu)化分析
本文選題:防爆柴油機(jī) + 進(jìn)氣系統(tǒng) ; 參考:《太原理工大學(xué)》2015年碩士論文
【摘要】:防爆柴油機(jī)是礦業(yè)生產(chǎn)的主要?jiǎng)恿υ粗,憑借其燃燒熱效率高、燃油消耗率低以及使用安全、操作方便等優(yōu)點(diǎn),應(yīng)用范圍越來(lái)越廣。但防爆柴油機(jī)進(jìn)氣系統(tǒng)內(nèi)加裝了進(jìn)氣柵欄、空氣關(guān)斷閥等防爆裝置,增加了進(jìn)氣系統(tǒng)的進(jìn)氣阻力,降低了柴油機(jī)的進(jìn)氣充量和燃燒熱效率,導(dǎo)致其動(dòng)力性和經(jīng)濟(jì)性降低。所以,探究如何減小防爆柴油機(jī)進(jìn)氣系統(tǒng)的進(jìn)氣阻力,對(duì)提升防爆柴油機(jī)的性能具有深遠(yuǎn)的意義。 本文以6100型防爆柴油機(jī)為研究對(duì)象,運(yùn)用計(jì)算流體動(dòng)力學(xué)(CFD)和FLUENT分析軟件,對(duì)防爆柴油機(jī)進(jìn)氣系統(tǒng)的進(jìn)氣柵欄和進(jìn)氣歧管進(jìn)行內(nèi)部流場(chǎng)分析,選擇合理的進(jìn)氣柵欄和進(jìn)氣歧管結(jié)構(gòu)參數(shù),增加進(jìn)氣充量,提高各缸的進(jìn)氣均勻性;從而改善防爆柴油機(jī)的性能。本文的主要研究?jī)?nèi)容如下: 1)利用UG建模軟件建立6100防爆柴油機(jī)進(jìn)氣防爆柵欄的流體動(dòng)力學(xué)模型,應(yīng)用FLUENT軟件對(duì)進(jìn)氣柵欄內(nèi)部流場(chǎng)進(jìn)行了模擬研究,通過(guò)壓力分布、速度分布、湍動(dòng)能分布來(lái)分析不同柵欄間隙對(duì)進(jìn)氣量的影響。最終得出0.30mm柵欄間隙的進(jìn)氣柵欄較為合理。 2)為了解決進(jìn)氣防爆柵欄背壓大、進(jìn)氣量小的問(wèn)題,本文對(duì)進(jìn)氣柵欄的結(jié)構(gòu)進(jìn)行分析,選取進(jìn)氣柵欄的進(jìn)氣管長(zhǎng)度、穩(wěn)壓腔角度以及柵欄縫隙間距這三個(gè)比較重要的因素,每個(gè)因素選取三個(gè)水平進(jìn)行正交試驗(yàn)分析,得出各因素對(duì)進(jìn)氣量影響的主次順序,從而確定進(jìn)氣柵欄最佳的結(jié)構(gòu)匹配方案。 3)應(yīng)用FLUENT軟件對(duì)6100防爆柴油機(jī)進(jìn)氣歧管進(jìn)行流場(chǎng)模擬計(jì)算,對(duì)歧管內(nèi)部進(jìn)行流動(dòng)特性分析,以流體力學(xué)為依據(jù),對(duì)原設(shè)計(jì)進(jìn)行改進(jìn),并對(duì)比分析了改進(jìn)前后兩種進(jìn)氣歧管結(jié)構(gòu)的出口截面速度、歧管內(nèi)的氣流流速及湍流動(dòng)能。結(jié)果表明,減小穩(wěn)壓腔體積,在穩(wěn)壓腔與歧管之間設(shè)置一部分過(guò)渡段有利于改善柴油機(jī)各缸的進(jìn)氣均勻性,增加進(jìn)氣充量,進(jìn)而提高柴油機(jī)的性能。 4)改變進(jìn)氣總管和歧管的長(zhǎng)度與直徑,運(yùn)用GT-POWER軟件對(duì)其進(jìn)行仿真優(yōu)化,之后根據(jù)動(dòng)力性、燃油經(jīng)濟(jì)性為依據(jù),挑選出最佳尺寸。根據(jù)整機(jī)的布置情況及分析結(jié)果表明,,減小總管和歧管長(zhǎng)度,增加歧管直徑有利于提升發(fā)動(dòng)機(jī)的性能。
[Abstract]:Explosion-proof diesel engine is one of the main power sources in mining industry. Because of its high combustion heat efficiency, low fuel consumption rate, safe use, easy operation and other advantages, the application of diesel engine is becoming more and more extensive. However, in the intake system of explosion-proof diesel engine, the blast proof devices such as intake fence and air shutoff valve are installed, which increases the intake resistance of the intake system, reduces the intake air charge and combustion heat efficiency of the diesel engine, and results in the decrease of its power and economy. Therefore, exploring how to reduce the intake resistance of explosion-proof diesel engine is of great significance to improve the performance of explosion-proof diesel engine. In this paper, the internal flow field of intake fence and intake manifold of intake system of explosion-proof diesel engine is analyzed by using computational fluid dynamics (CFD) and FLUENT software, taking 6100 type explosion-proof diesel engine as the research object. Reasonable intake fencing and intake manifold structure parameters are selected to increase intake air charge and improve the air intake uniformity of each cylinder so as to improve the performance of explosion-proof diesel engine. The main contents of this paper are as follows: 1) the fluid dynamics model of 6100 explosion-proof diesel engine is established by using UG modeling software, and the flow field inside the inlet air fence is simulated by FLUENT software. The pressure distribution and velocity distribution are used to simulate the flow field. The distribution of turbulent kinetic energy is used to analyze the influence of different fencing gaps on air intake. Finally, it is concluded that the air inlet fence with 0.30mm gap is more reasonable. 2) in order to solve the problem of high back pressure and low intake, the structure of intake fence is analyzed, and three important factors, such as the length of intake pipe, the angle of stable cavity and the gap spacing of fence, are selected. Three levels of each factor are selected for orthogonal experimental analysis, and the primary and secondary order of the influence of each factor on the air intake is obtained, so as to determine the optimal structure matching scheme of the air intake fence. 3) the flow field of intake manifold of 6100 explosion-proof diesel engine is simulated by using FLUENT software, and the flow characteristics inside the manifold are analyzed. Based on hydrodynamics, the original design is improved. The exit cross section velocities, the flow velocity and turbulent kinetic energy of the two kinds of intake manifold structures before and after the improvement are compared and analyzed. The results show that reducing the volume of the steady pressure chamber and setting a part of transition section between the stable pressure cavity and the manifold is beneficial to improve the uniformity of the intake of the diesel engine cylinder, increase the intake volume, and then improve the performance of the diesel engine. 4) changing the length and diameter of intake manifold and manifold, using GT-POWER software to simulate and optimize them, and then selecting the best size according to power performance and fuel economy. According to the arrangement of the whole machine and the analysis results, it is shown that reducing the length of the manifold and increasing the diameter of the manifold are beneficial to the performance of the engine.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD684;TK423
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊新順;張松;王志忠;李湛;華卓;;多缸柴油機(jī)防爆處理技術(shù)研究[J];電氣防爆;2013年01期
2 高嶺;高慶貴;;阻火器的設(shè)計(jì)和選用[J];化工設(shè)計(jì);2011年02期
3 畢玉華;何常明;雷基林;申立中;;柴油機(jī)螺旋進(jìn)氣道結(jié)構(gòu)參數(shù)對(duì)氣道性能的影響分析[J];空氣動(dòng)力學(xué)學(xué)報(bào);2010年05期
4 魏勇剛;雷煌;張福祥;孟國(guó)營(yíng);;防爆柴油機(jī)進(jìn)排氣部件的試驗(yàn)分析[J];礦山機(jī)械;2009年16期
5 王斌;張翠平;趙明崗;;煤礦用防爆柴油機(jī)的應(yīng)用現(xiàn)狀與發(fā)展趨勢(shì)[J];礦山機(jī)械;2010年14期
6 韓曉強(qiáng);;防爆柴油機(jī)進(jìn)氣柵欄計(jì)算流體動(dòng)力學(xué)分析[J];煤礦機(jī)械;2010年12期
7 余國(guó)勝;;礦用防爆柴油機(jī)的設(shè)計(jì)和結(jié)構(gòu)[J];煤炭科學(xué)技術(shù);1987年03期
8 趙長(zhǎng)祿,周磊,岳玉嵩,張付軍,葛蘊(yùn)珊;通過(guò)進(jìn)氣道優(yōu)化改進(jìn)柴油機(jī)的性能[J];內(nèi)燃機(jī)學(xué)報(bào);2003年04期
9 劉敬平;進(jìn)氣系壓力波動(dòng)與多缸發(fā)動(dòng)機(jī)充氣效率-轉(zhuǎn)速特性形態(tài)的關(guān)系研究[J];內(nèi)燃機(jī)學(xué)報(bào);1997年02期
10 張翠平;495G型汽油機(jī)進(jìn)排氣歧管的設(shè)計(jì)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2000年05期
本文編號(hào):1883145
本文鏈接:http://www.sikaile.net/kejilunwen/dongligc/1883145.html