微流體三維速度場(chǎng)和溫度場(chǎng)測(cè)試方法研究
本文選題:速度 切入點(diǎn):溫度 出處:《浙江大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:在資源日漸短缺的今天,微型化得到了廣泛運(yùn)用,如微電子微機(jī)械系統(tǒng)和微全分析系統(tǒng)等,它們?cè)诤艽蟪潭壬瞎?jié)約了資源和能源,提高了科研效率。近年來,越來越多的學(xué)者將目光投向流體流動(dòng)的微型化上,以期達(dá)到優(yōu)化工業(yè)設(shè)計(jì)、提高生產(chǎn)效率的目的。速度和溫度是微流體兩個(gè)重要的參量,其數(shù)值大小直接影響能耗以及反應(yīng)的進(jìn)行。而微流體尺度微小,需要發(fā)展出適用的測(cè)速和測(cè)溫手段。本文研究微流體三維速度場(chǎng)和溫度場(chǎng)的同時(shí)測(cè)量技術(shù),提出聯(lián)用顯微全息PTV(MicroHPTV)、基于激光誘導(dǎo)熒光的測(cè)溫術(shù)以及熒光顆粒離焦成像技術(shù),設(shè)計(jì)并搭建了光學(xué)實(shí)驗(yàn)平臺(tái),開展了相關(guān)的研究:1. MicroHPTV測(cè)速技術(shù)原理及實(shí)驗(yàn)研究首先研究顯微成像系統(tǒng)的景深大小及其影響因素。接著研究基于小波或者卷積的重建算法的若干聚焦判據(jù)曲線,結(jié)果表明小波域內(nèi)采用亮度梯度局部方差判據(jù)法在重建z軸位置方面性能優(yōu)越。再者以數(shù)值模擬的手段,考察顯微全息三維定位和MicroHPTV技術(shù)的速度測(cè)量誤差。然后將顯微全息和該重建算法應(yīng)用到大景深的離散顆粒場(chǎng)和傾斜的連續(xù)物的測(cè)量。最后,使用MicroHPTV技術(shù)測(cè)量微通道內(nèi)流體的三維速度場(chǎng),并與理論預(yù)測(cè)結(jié)果作對(duì)比分析。2.基于激光誘導(dǎo)磷光和熒光的測(cè)溫技術(shù)的實(shí)驗(yàn)研究磷光和熒光的誘導(dǎo)成因類似,基于激光誘導(dǎo)磷光和熒光的測(cè)溫技術(shù)均可以運(yùn)用到微流體的測(cè)溫中。首先研究并開發(fā)了工業(yè)型磷光材料ZnS:Eu的絕對(duì)磷光強(qiáng)度與溫度的標(biāo)定曲線。然后以羅丹明B和磺基羅丹明101制備成一定濃度比的混合水溶液,根據(jù)其熒光光譜與溫度的變化曲線挑選出溫度敏感與不敏感的熒光波段,搭建雙色熒光測(cè)溫實(shí)驗(yàn)平臺(tái),標(biāo)定了熒光光強(qiáng)比與溫度的測(cè)量曲線。根據(jù)標(biāo)定曲線,即可由實(shí)驗(yàn)數(shù)據(jù)插值計(jì)算被測(cè)溫度。3.三維速度場(chǎng)和溫度場(chǎng)的同時(shí)測(cè)量研究首先針對(duì)顯微成像系統(tǒng)景深較小的問題,開展了熒光顆粒離焦成像的特性研究,實(shí)驗(yàn)和模擬結(jié)果說明盡管熒光顆粒的絕對(duì)強(qiáng)度受離焦位置的影響,但是強(qiáng)度比卻不受影響。接著提出利用顯微全息進(jìn)行顆粒的三維定位,運(yùn)用顆粒匹配算法,推導(dǎo)出熒光圖像上顆粒的三維位置,同時(shí)利用熒光的強(qiáng)度比與溫度的單調(diào)相關(guān)性,得到三維溫度場(chǎng)。最后聯(lián)用MicroHPTV、雙色熒光測(cè)溫法和熒光顆粒離焦成像法,開展了微流體三維速度場(chǎng)和溫度場(chǎng)同時(shí)測(cè)量的模擬研究,證實(shí)了測(cè)量技術(shù)的可行性,得到了微流體三維速度場(chǎng)和溫度場(chǎng)的分布。
[Abstract]:In today's increasingly scarce resources, miniaturization has been widely used, such as microelectromechanical systems and micro-total analysis systems, which have largely saved resources and energy, and improved the efficiency of scientific research. More and more scholars are focusing on the miniaturization of fluid flow in order to optimize industrial design and improve production efficiency. Speed and temperature are two important parameters of microfluid. Its numerical value directly affects the energy consumption and the reaction, but the microfluid scale is small, so it is necessary to develop suitable velocity and temperature measurement methods. In this paper, the 3-D velocity field and temperature field of microfluid are studied simultaneously. Based on laser induced fluorescence thermometry and fluorescence particle defocusing imaging technology, an optical experimental platform is designed and built. The principle and experiment of MicroHPTV velocimetry technology are studied. Firstly, the depth of field and its influencing factors are studied. Then, some focus criterion curves of reconstruction algorithm based on wavelet or convolution are studied. The results show that the local variance criterion of brightness gradient in wavelet domain is superior in reconstruction of z axis position. The measurement error of microholographic 3-D positioning and MicroHPTV technique is investigated. Then the micro-holography and the reconstruction algorithm are applied to the measurement of discrete particle fields with large depth of field and tilted continuum. The three-dimensional velocity field of the fluid in microchannel was measured by MicroHPTV technique, and compared with the theoretical prediction results. 2. The experimental study on the laser-induced phosphorescence and fluorescence based on the temperature measurement technique is similar in origin of phosphorescence and fluorescence induction. The temperature measurement based on laser induced phosphorescence and fluorescence can be used to measure the temperature of microfluid. Firstly, the calibration curves of absolute phosphorescence intensity and temperature of industrial phosphor material ZnS:Eu are studied and developed. Then the calibration curves of absolute phosphorescence intensity and temperature of industrial phosphor material ZnS:Eu are studied and developed. The mixed aqueous solution with a certain concentration ratio was prepared by sulfonyl rhodamine 101. According to the variation curve of fluorescence spectrum and temperature, the temperature-sensitive and insensitive fluorescence bands are selected, and the experimental platform of two-color fluorescence temperature measurement is built, and the measuring curve of fluorescence intensity ratio and temperature is calibrated. The 3-D velocity field and temperature field are measured simultaneously. Firstly, aiming at the problem of small depth of field in microscopic imaging system, the characteristics of defocusing imaging of fluorescent particles are studied. The experimental and simulation results show that although the absolute intensity of fluorescent particles is affected by the defocus position, the intensity ratio is not affected. The three-dimensional position of the particles on the fluorescence image is deduced, and the three-dimensional temperature field is obtained by using the monotone correlation between the intensity ratio of fluorescence and temperature. Finally, the microHPTV, dual-color fluorescence thermometry and fluorescence particle defocusing imaging are combined. The three-dimensional velocity field and temperature field of microfluid are simulated and studied. The feasibility of the measurement technique is verified and the distribution of three-dimensional velocity field and temperature field of micro-fluid is obtained.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TK31
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏守水;江興娥;白光磊;姜春香;;直管形超聲行波微流體驅(qū)動(dòng)模型的模態(tài)與諧響應(yīng)分析[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2006年06期
2 魯立君;吳健康;;無閥壓電微流體泵工作特性與結(jié)構(gòu)參數(shù)[J];機(jī)械工程學(xué)報(bào);2008年11期
3 孫宏明;郭航;;微流體裝置中超聲流的研究[J];傳感技術(shù)學(xué)報(bào);2008年03期
4 姜洪源;楊胡坤;敖宏瑞;RAMOS Antonio;;行波電滲微流體驅(qū)動(dòng)理論模型與實(shí)驗(yàn)[J];光學(xué)精密工程;2009年05期
5 趙志文;陳興;LAM Y C;;被分析物在微流體器件中的分散特性[J];機(jī)械工程學(xué)報(bào);2006年03期
6 張敬濤;魏守水;徐昊;;超聲行波微流體驅(qū)動(dòng)模型的耦合分析[J];微納電子技術(shù);2010年01期
7 張永立,吳健康;生物芯片無閥壓電微流體泵流場(chǎng)數(shù)值研究[J];應(yīng)用數(shù)學(xué)和力學(xué);2005年08期
8 陳煒;魏守水;吳浩;張丹丹;;超聲行波微流體驅(qū)動(dòng)圓環(huán)模型分析[J];壓電與聲光;2010年04期
9 蔣炳炎;謝磊;譚險(xiǎn)峰;魯世強(qiáng);;流道截面形狀對(duì)微流體流動(dòng)性能的影響[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年05期
10 王衛(wèi)東;賈建援;;微流體對(duì)中心開孔圓盤的阻尼特性[J];西南交通大學(xué)學(xué)報(bào);2006年02期
相關(guān)會(huì)議論文 前10條
1 朱學(xué)林;褚家如;;微流體交變電滲驅(qū)動(dòng)仿真研究[A];慶祝中國力學(xué)學(xué)會(huì)成立50周年暨中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
2 范士\,
本文編號(hào):1584540
本文鏈接:http://www.sikaile.net/kejilunwen/dongligc/1584540.html