天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 地質(zhì)論文 >

地表動態(tài)大地測量資料反映的孕震斷層變形機(jī)制研究

發(fā)布時間:2018-09-18 08:36
【摘要】:構(gòu)造地震孕育、發(fā)生、震后調(diào)整過程中應(yīng)力應(yīng)變積累、釋放必然伴隨有相應(yīng)的地殼形變發(fā)生。利用大地測量動態(tài)資料研究與地震過程密切關(guān)聯(lián)的地殼形變時空動態(tài)特征是地震預(yù)測研究的重要途徑之一。由于構(gòu)造地震發(fā)生在活動斷層上(通常在10公里以下的深部),因此如何建立逼近真實(shí)的地表形變動態(tài)變化與孕震斷層深淺部應(yīng)力應(yīng)變狀態(tài)的關(guān)系以揭示孕震斷層變形機(jī)理,是地震機(jī)理與預(yù)測研究中至關(guān)重要的科學(xué)問題。開展這方面的研究具有重要的科學(xué)意義。本論文首先研究了利用GPS觀測資料獲取與地震孕育關(guān)聯(lián)的地表形變動態(tài)變化特征方法,進(jìn)一步研究了深淺部地殼運(yùn)動狀態(tài)與斷層應(yīng)變積累之間的關(guān)系。主要研究內(nèi)容、結(jié)果和取得認(rèn)識如下:1.地殼變形動態(tài)特征分析方法研究及其在南北地震帶的應(yīng)用。研究解決了速度場穩(wěn)定基準(zhǔn)選取和變形頻域一致等建立多期可比較速度場的關(guān)鍵技術(shù)問題;研究討論了微元轉(zhuǎn)動參數(shù)的基本特性及其在構(gòu)造形變分析中的意義。a.利用“中國地殼運(yùn)動觀測網(wǎng)絡(luò)”和“中國大陸構(gòu)造環(huán)境監(jiān)測網(wǎng)絡(luò)"GPS區(qū)域站1999年~2013年7期復(fù)測資料,建立了南北地震帶地區(qū)相對于穩(wěn)定華南地塊統(tǒng)一參考基準(zhǔn)的多期速度場,基于該具有可比性速度場,對2008年汶川8.0級地震前后的地殼形變動態(tài)過程進(jìn)行了分析。(1)為構(gòu)建各期速度場的統(tǒng)一參考基準(zhǔn),發(fā)展了擬準(zhǔn)檢定法(QUAD法)剔除觀測點(diǎn)群中的不穩(wěn)定點(diǎn),改進(jìn)了初選指標(biāo)穩(wěn)定點(diǎn)選取準(zhǔn)則,有效抑制了初算結(jié)果可能出現(xiàn)的基準(zhǔn)偏移對穩(wěn)定點(diǎn)的篩選影響,提高了結(jié)果的可靠性。(2)選擇統(tǒng)一且適當(dāng)?shù)膮f(xié)方差衰減參數(shù),利用最小二乘配置進(jìn)行GPS速度場擬合推估,保證了各期速度場具有相同的變形頻域,并解決了不同期資料測點(diǎn)分布存在差異的問題。(3)對任意兩期網(wǎng)格化速度場求差分獲取了這段時間的地表位移動態(tài)變化。汶川地震前后的兩期速度場差值結(jié)果顯示,在2007-2009年間汶川地震的影響范圍較大,包括祁連地塊、柴達(dá)木地塊東部都有明顯的南東東向運(yùn)動響應(yīng),但距破裂帶更近的鄂爾多斯西南緣響應(yīng)很小,可能屬于背景應(yīng)力應(yīng)變積累水平較高的地帶,但巴顏喀拉地塊北邊界帶東部的東昆侖斷裂帶左旋剪切的響應(yīng)明顯。汶川地震震后效應(yīng)對龍門山斷裂帶南段表現(xiàn)為顯著的應(yīng)變加載過程,而鮮水河斷裂帶則表現(xiàn)為與應(yīng)變積累背景相反的右旋扭動響應(yīng)。(4)汶川地震發(fā)生后,川滇地塊中北部及其邊界有近東西向擠壓增強(qiáng),但整個川滇地塊南東向擠出滑移的運(yùn)動背景并沒有增強(qiáng),直到2011-2013時段南東向運(yùn)動才有所增強(qiáng)。b、通過應(yīng)變張量計算得到的轉(zhuǎn)動參數(shù)反映計算單元的有限轉(zhuǎn)動但不包含純應(yīng)變信息,與應(yīng)變參數(shù)配合使用可以更客觀的反映地表的變形狀態(tài)。(1)該特征與剪應(yīng)變參數(shù)不同,轉(zhuǎn)動參數(shù)與坐標(biāo)方向的選取無關(guān),值的大小表示微小單元的轉(zhuǎn)動。(2)轉(zhuǎn)動參數(shù)與參考基準(zhǔn)的選取有關(guān)。當(dāng)研究多期資料時,需考慮參考基準(zhǔn)的統(tǒng)一,可采用研究區(qū)域無整體旋轉(zhuǎn)基準(zhǔn)速度場進(jìn)行計算。(3)轉(zhuǎn)動參數(shù)反映了微元在變形中主應(yīng)變軸的偏轉(zhuǎn);趨^(qū)域無整體旋轉(zhuǎn)基準(zhǔn)速度場計算的轉(zhuǎn)動參數(shù)可表示最大剪應(yīng)變在兩個方向的不對稱,從而確定區(qū)域構(gòu)造運(yùn)動決定的實(shí)際剪切變形最大方向。(4)對于純走滑斷層,震間位移曲線的斜率反映了轉(zhuǎn)動參數(shù)的大小。當(dāng)斷層的變形寬度較窄時,轉(zhuǎn)動參數(shù)非零值的區(qū)域較窄;當(dāng)斷層的變形寬度較寬時,轉(zhuǎn)動參數(shù)非零值的區(qū)域較寬。當(dāng)區(qū)域剪應(yīng)變較大時,如果轉(zhuǎn)動參數(shù)量值較大,說明斷層的應(yīng)變積累程度可能較高;當(dāng)區(qū)域剪應(yīng)變較大,而轉(zhuǎn)動參數(shù)量值較小,說明斷層的應(yīng)變積累程度可能較低,甚至斷層處于蠕滑狀態(tài)。2.一般傾角斷層下地表震間/同震位移場的變形特征研究。通過對特定斷層的剖面分析研究,從力學(xué)特性分析了斷層傾角對地表位移的影響。在原有公式基礎(chǔ)上推導(dǎo)給出了帶斷層傾角的震間、同震的走滑、傾滑地表位移公式,該公式能夠較好的擬合與斷層閉鎖關(guān)聯(lián)的地表位移,與位錯模型中的復(fù)雜公式相比是一種簡化公式,但已能達(dá)到相當(dāng)高的擬合精度,便于對用實(shí)測GPS速度場資料做擬合的實(shí)際應(yīng)用。(1)對于非直立型走滑斷層而言,震間變形中心一般不位于斷層出露地表處,而是位于斷層的滑動段上邊沿,即斷層閉鎖段與滑動段的分界線在地表投影處。(2)無論走滑斷層還是傾滑斷層的震間形變,斷層閉鎖段與滑動段的分界線在地表投影與斷層地表出露處之間的距離doftset、斷層閉鎖深度d和斷層傾角δ之間存在關(guān)系tanδ=d/doffs,此關(guān)系揭示了斷層的閉鎖深度與斷層傾角之間的內(nèi)在關(guān)系。(3)由于斷層傾角的影響,震間形變曲線以斷層閉鎖段與滑動段的分界線在地表投影為中心,同震時上下盤錯動沿斷層發(fā)生錯動,導(dǎo)致上下盤同震釋放的位移不對稱。而當(dāng)發(fā)震斷層為盲斷層時,地震錯動不達(dá)到地表時的特例情況與震間的情況類似。(4)基于實(shí)際觀測數(shù)據(jù)利用帶傾角的公式擬合安寧河斷裂帶的傾角,得到的傾角結(jié)果小于地質(zhì)考察結(jié)果,原因可能由于實(shí)際斷層是曲面而非平面,在地表處斷層陡峭,隨著斷層深度增加傾角變小。由于斷層閉鎖段以下滑動,對地表位移的影響,相當(dāng)于斷層出露地表處與斷層閉鎖與滑動分界之間存在一條“平面斷層”對地表的作用。利用反正切函數(shù)擬合的傾角結(jié)果為這條“平面斷層”的傾角。3.應(yīng)用三維數(shù)值流形方法研究孕震斷層深淺部力學(xué)特性;谌S數(shù)值流形方法的連續(xù)與非連續(xù)耦合計算的優(yōu)勢,通過斷層切割算法構(gòu)建了三維模型,對孕震斷層的力學(xué)特性進(jìn)行研究。設(shè)置斷層上部閉鎖,下部滑動,對研究塊體側(cè)向和底部加載“動力源”進(jìn)行走滑剪切數(shù)值試驗(yàn),給出了不同加載方式下地表位移場分布差異特性;谠摻Y(jié)果,對汶川地震后龍門山斷裂帶和川滇塊體東邊界斷裂帶閉鎖深度反演的動態(tài)變化給出了機(jī)理上的解釋。(1)利用三維數(shù)值流形方法的斷層切割算法建立了三維塊體模型,塊體中的斷層設(shè)置為上部閉鎖,下部滑動,對研究區(qū)域塊體加載“推擠”和“拖曳”兩種力源來模擬塊體所受其他塊體對其的推擠作用和脆性層底部軟流物質(zhì)對其拖曳作用。模擬結(jié)果顯示,兩種動力模式下地表位移場均呈現(xiàn)較精確的反正切函數(shù)特性,與位錯解析結(jié)果有很好的一致性。(2)針對兩種不同“力源”輸入,模擬得到的位移分布曲線表現(xiàn)出顯著差異,在一定程度上反映力源的力學(xué)特征!巴茢D”力源的力學(xué)特性是沿水平方向傳遞,得到的反正切曲線在斷層遠(yuǎn)端相對平直,曲線遠(yuǎn)端基本反映“推擠力源”的加載量,變形寬帶較小,利用反正切函數(shù)擬合得到的閉鎖深度小于模型設(shè)定值。“拖曳”力源的力學(xué)特性是垂直向上傳遞,得到的反正切曲線在斷層遠(yuǎn)端略有上翹,由于力在垂直方向傳遞時衰減導(dǎo)致曲線遠(yuǎn)端不能反映“推擠力源”的加載量,曲線變形寬帶較大,利用反正切函數(shù)擬合得到的閉鎖深度大于模型設(shè)定值。(3)實(shí)際塊體應(yīng)既受到其他塊體對其的推擠作用,又受到下部軟流物質(zhì)對其的拖曳作用。將兩種力源按不同比例同時加載,得到的結(jié)果表明:哪種力源增強(qiáng),地表形變動態(tài)變化就體現(xiàn)出此力源加載下的曲線特征;诖苏J(rèn)識可以對汶川地震之后川滇地區(qū)地殼深淺部運(yùn)動特征和DEFNODE負(fù)位錯反演動態(tài)結(jié)果給出可能的解釋。汶川地震之后,龍門山斷裂帶南段西側(cè)的巴顏喀拉塊體南東向運(yùn)動增強(qiáng),是由于龍門山斷裂帶脆性層同震釋放所導(dǎo)致,可理解為塊體的“推擠”作用,所以反演得到的龍門山斷裂帶南段閉鎖深度變淺。上部脆性層的突然加速對下部軟流物質(zhì)提供加載動力。獲得加載動力的巴顏喀拉塊體下部軟流物質(zhì)由通道進(jìn)入川滇塊體下部,對川滇塊體上部脆性層提供了“拖曳”力源,由此計算的小江斷裂閉鎖深度增加。(4)“推擠”與“拖曳”力源計算得到斷層不同深度的位移結(jié)果均表明斷層的閉鎖段以下位移量隨深度逐漸加大,并非位錯理論中閉鎖與滑動的突變分界而是漸變的過程,這與Tse and Rice (1986)、Scholz (1998)的模型的示意圖具有一致性。(5)考慮下部軟流物質(zhì)應(yīng)為漸變的可能性,對“拖曳”力源進(jìn)行改進(jìn),使之逐漸加載,加載量與距斷層距離呈現(xiàn)單調(diào)遞增函數(shù)關(guān)系。模擬得到的地表位移結(jié)果表明,漸變“拖曳”力源的加載使得地表位移曲線相比于無漸變“拖曳”力源得到的變形寬度更大,因此實(shí)際斷層由于可能存在軟流物質(zhì)漸變拖曳而使得地表變形寬度更寬。(6)南北地震帶中段三維數(shù)值流形模擬結(jié)果表明,在彈性本構(gòu)模型下水平主應(yīng)力增量和水平主應(yīng)變增量的方向具有一致性,但主張應(yīng)力增量與主壓應(yīng)力增量的比值和主張應(yīng)變增量與主壓應(yīng)變增量的比值存在差異。汶川地震前龍門山斷裂帶處于擠壓面應(yīng)力積累狀態(tài),汶川震源區(qū)處于該擠壓應(yīng)力速率高值區(qū)的邊緣,以汶川震源區(qū)為界龍門山斷裂帶南段的擠壓應(yīng)力速率明顯快于龍門山斷裂帶北東段。汶川地震后的2009-2013年龍門山斷裂帶中北段處于震后調(diào)整過程,而龍門山斷裂帶南段則處于應(yīng)力積累狀態(tài)。鮮水河斷裂帶中北段以張性應(yīng)力增量為主,而其中南段以張剪應(yīng)力增量為主。蘆山地震震源區(qū)處于龍門山斷裂帶中北段和鮮水河斷裂帶中南段最大剪應(yīng)力快速積累區(qū)的弱化地帶。安寧河斷裂帶的最大剪應(yīng)力積累速率小于其北側(cè)的鮮水河斷裂帶南段以及其南側(cè)的則木河斷裂帶?傮w而言,本文通過定量描述地表形變動態(tài)變化特征;從理論上研究斷層傾角對震間和同震的地表位移影響;利用三維數(shù)值流形方法研究斷層深淺部力學(xué)特性對地表位移的影響,分析了地殼動態(tài)變形特征及其反映的孕震斷層力學(xué)特性,對孕震斷層應(yīng)變積累狀態(tài)與地表位移的動態(tài)變化之間關(guān)系有了初步認(rèn)識。為今后進(jìn)一步結(jié)合不同期GPS資料,利用三維數(shù)值流形方法研究實(shí)際斷層不同時間段地表形變動態(tài)變化的深部動力加載影響、科學(xué)揭示孕震斷層閉鎖與深淺部應(yīng)力應(yīng)變狀態(tài)奠定了理論基礎(chǔ)。
[Abstract]:The accumulation and release of stress and strain in the process of tectonic earthquake preparation, occurrence and post-earthquake adjustment must be accompanied by corresponding crustal deformation. So how to establish the relationship between the dynamic change of surface deformation and the stress-strain state of the shallow and deep part of the fault to reveal the deformation mechanism of the fault is a very important scientific problem in the study of earthquake mechanism and prediction. Firstly, the method of acquiring dynamic characteristics of surface deformation associated with earthquake preparation by GPS observation data is studied, and the relationship between crustal movement and fault strain accumulation is further studied. The key technical problems of establishing multi-period comparable velocity field, such as selection of stable datum of velocity field and uniformity of deformation frequency domain, are studied and solved. The basic characteristics of micro-element rotation parameters and their significance in structural deformation analysis are discussed. Based on the comparable velocity field, the dynamic process of crustal deformation before and after the 2008 Wenchuan M8.0 earthquake is analyzed. (1) In order to construct the unified velocity field of each period, the multi-period velocity field in the North-South seismic zone is established relative to the unified reference datum of the stable South China block. Reference datum, Quasi-Accurate calibration (QUAD) method is developed to eliminate the unstable points in the observation point group, and the selection criterion of the stable points of the primary selection index is improved. The influence of the datum offset that may appear in the initial calculation results on the selection of the stable points is effectively suppressed, and the reliability of the results is improved. (2) Unified and appropriate covariance attenuation parameters are selected, and the minimum is used. Second-order collocation is used to fit and estimate the GPS velocity field, which ensures that the velocity field of each period has the same deformation frequency domain, and solves the problem that the distribution of the observation points in different periods is different. (3) The dynamic variation of the surface displacement in this period is obtained by calculating the difference of the grid velocity field of any two periods. The results show that the Wenchuan Earthquake in 2007-2009 has a large influence range, including the Qilian Block and the eastern Qaidam Block, which have obvious southeast-east movement response, but the southwestern margin of Ordos, which is nearer to the rupture zone, has a small response and may belong to the zone with higher background stress-strain accumulation, but the eastern part of the northern boundary zone of the Bayanhar Block. The response of the East Kunlun fault zone to sinistral shear is obvious. The post-earthquake effect of Wenchuan earthquake on the southern section of Longmenshan fault zone shows a significant strain loading process, while the Xianshuihe fault zone shows a dextral torsion response contrary to the background of strain accumulation. (4) After the Wenchuan earthquake, the north-central Sichuan-Yunnan block and its boundary have nearly E-W compression and increase. However, the movement background of the whole Chuan-Yun block is not enhanced until 2011-2013. B. The rotation parameters calculated by the strain tensor reflect the finite rotation of the calculation element but do not contain the pure strain information. The combination of the rotation parameters and the strain parameters can reflect the surface more objectively. (2) The rotational parameters are related to the selection of reference datum. When studying multi-period data, the unification of reference datum should be considered, and the velocity field without reference datum in the study area can be calculated. (3) The rotational parameters reflect the deflection of the principal strain axis of the element in deformation. The rotational parameters calculated based on the region without global rotational reference velocity field can indicate the asymmetry of the maximum shear strain in two directions, thus determining the maximum direction of actual shear deformation determined by regional tectonic movement. (4) For pure strike-slip faults, the obliquity of the interseismic displacement curve When the deformation width of the fault is narrow, the region with non-zero rotation parameters is narrower; when the deformation width of the fault is wide, the region with non-zero rotation parameters is wider. The larger strain and the smaller rotational parameter indicate that the strain accumulation of faults may be lower, even the faults are in creep state. 2. Study on deformation characteristics of surface inter-seismic/co-seismic displacement field under general dip-angle faults. On the basis of the original formula, the formulas of the earth surface displacement with fault dip angle, strike slip and dip slip are deduced and given. The formulas can well fit the ground surface displacement associated with fault locking. Compared with the complex formulas in the dislocation model, the formulas are simplified, but they have reached fairly high fitting accuracy and are convenient for the GPS velocity measurement. (1) For non-vertical strike-slip faults, the center of interseismic deformation is not located on the surface of the fault, but on the upper edge of the fault slip section, i.e. the boundary between the fault block and the slip section is projected on the surface. (2) Whether the strike-slip fault or the dip-slip fault, the fault is closed. Doftset is the distance between surface projection and outcrop of faults. There is a relationship between fault locking depth D and fault dip angle delta. This relationship reveals the intrinsic relationship between fault locking depth and fault dip angle. (3) Interseismic deformation curve is closed by fault due to the influence of fault dip angle. The boundary between lock section and sliding section is centered on the surface projection, and the dislocation of upper and lower wall occurs along the fault during the same earthquake, resulting in the dissymmetry of the displacement released by the same earthquake. The dip angle of the Anning River fault zone is smaller than that of the geological investigation. The reason may be that the actual fault is a curved surface rather than a plane, the fault is steep on the surface, and the dip angle decreases with the increase of the depth of the fault. There is a "plane fault" acting on the earth's surface between the lock and the slip boundary. The dip angle of the "plane fault" is obtained by fitting the tangent function. 3. The mechanical properties of the depth and shallowness of the seismogenic fault are studied by using the three-dimensional numerical manifold method. A three-dimensional model is constructed by using fault cutting algorithm to study the mechanical properties of seismogenic faults.The upper part of the fault is locked and the lower part slides.The numerical tests of strike-slip shear are carried out on the "power source" loaded laterally and at the bottom of the block.The distribution characteristics of surface displacement field under different loading modes are given.Based on the results,the Wenchuan area is studied. The dynamic change of the inversion of the locking depth of the Longmenshan fault zone and the eastern boundary fault zone of the Sichuan-Yunnan block after the earthquake is explained in mechanism. (1) A three-dimensional block model is established by using the fault cutting algorithm of the three-dimensional numerical manifold method. The fault in the block is set up as upper locking and lower sliding, and the block in the study area is loaded with "push" and "push". The simulation results show that the surface displacement field under the two dynamic modes exhibits more precise arc-tangent function characteristics, which is in good agreement with the results of dislocation analysis. (2) Two different "force sources" are used to simulate the pushing action of the block on the block and the dragging action of the soft flow material at the bottom of the brittle layer. The mechanical characteristics of the push force source are transmitted along the horizontal direction, and the arc-tangent curve is relatively straight at the far end of the fault. The far end of the curve basically reflects the load of the push force source, and the deformation broadband is small. The locking depth obtained by fitting the arc-tangent function is less than the set value of the model. The latch-up depth obtained by fitting the arc-tangent function is greater than the set value of the model. (3) The actual block should be pushed by other blocks and dragged by the lower asthenospheric material. Based on this understanding, it is possible to explain the characteristics of crustal movement in the deep and shallow part of Sichuan-Yunnan region and the results of DEFNODE negative dislocation inversion after Wenchuan earthquake. Because of the co-seismic release in the upper brittle layer, the locking depth in the southern section of the Longmenshan fault zone becomes shallower. The sudden acceleration of the upper brittle layer provides the loading power for the lower asthenospheric material. The upper brittle layer of the Yunnan block provides a "drag" force source, and the locking depth of the Xiaojiang fault calculated by this method increases. (4) The displacement results of different depths of the fault calculated by "push" and "drag" force sources show that the displacement below the locking section of the fault increases with the depth, not the sudden boundary between locking and sliding in the dislocation theory. It is a gradual process, which is consistent with the schematic diagram of Tse and Rice (1986) and Scholz (1998). (5) Considering the possibility that the underlying asthenosphere material should be gradual change, the drag force source is improved to gradually load, and the load and the distance from the fault show a monotonically increasing function relationship. The loading of the gradient dragging force source makes the deformation width of the surface displacement curve larger than that of the non-gradient dragging force source, so the deformation width of the actual fault is wider because of the possible existence of the gradient dragging of the asthenic material. (6) Three-dimensional numerical manifold simulation results of the mid-section of the North-South seismic belt show that the elastic constitutive model is applicable to the elastic constitutive model. The direction of the increment of the horizontal principal stress and the increment of the horizontal principal strain are consistent, but the ratio of the assertive stress increment to the increment of the principal compressive stress and the ratio of the assertive strain increment to the increment of the principal compressive strain are different. At the margin of the high value area, the compressive stress rate in the southern section of the Longmenshan fault zone bounded by the Wenchuan earthquake source region is obviously faster than that in the northeastern section of the Longmenshan fault zone. The focal area of the Lushan earthquake is in the weakening zone of the fast accumulation area of the maximum shear stress in the middle-north section of the Longmenshan fault zone and the middle-south section of the Xianshuihe fault zone. The Zemuhe fault zone on the side. Generally speaking, this paper quantitatively describes the dynamic change characteristics of surface deformation, and theoretically studies the dip angle of the fault on the interseismic sum.
【學(xué)位授予單位】:中國地震局地質(zhì)研究所
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:P315.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鄭文卿,陳瑤,袁道陽;斷層摩擦系數(shù)及其演化定量研究的新途徑[J];西北地震學(xué)報;2000年02期

2 蔣靖祥,溫和平,尹光華,劉輝;新疆黑孜斷層現(xiàn)今活動特征研究及有關(guān)問題的討論[J];中國地震;2001年03期

3 H.Rerfettini ;M.Campillo ;I.Ionescu;王文旭;胡鳳英;;論非均勻斷層滑動弱化速率的標(biāo)定[J];世界地震譯叢;2004年06期

4 何登發(fā),John SUPPE,賈承造;斷層相關(guān)褶皺理論與應(yīng)用研究新進(jìn)展[J];地學(xué)前緣;2005年04期

5 金紅林;夏紅;;2000年日本鳥取縣7.3級地震斷層滑動分布的研究[J];國際地震動態(tài);2007年07期

6 童亨茂;;巖石圈脆性斷層作用力學(xué)模型[J];自然雜志;2013年01期

7 徐葉邦;;斷層泥與斷層滑動方式[J];四川地震;1986年01期

8 Stefi Weisburd;許萬通;;一條年輕的斷層[J];地震地質(zhì)譯叢;1987年01期

9 呂德徽,向光中,才樹華,胡存德,張志堅,吳建華;毛毛山斷裂帶斷層巖的特征及其意義[J];內(nèi)陸地震;1994年02期

10 馬勝利,鄧志輝,馬文濤,,劉力強(qiáng),劉天昌,馬瑾,曾正文;雁列式斷層變形過程中物理場演化的實(shí)驗(yàn)研究(一)[J];地震地質(zhì);1995年04期

相關(guān)會議論文 前10條

1 劉力強(qiáng);郭玲莉;;斷層滑動勢的實(shí)驗(yàn)研究[A];中國地球物理學(xué)會第二十七屆年會論文集[C];2011年

2 鄭捷;李興才;;具有滑動弱化本構(gòu)關(guān)系的斷層滑動細(xì)胞自動機(jī)模型[A];1992年中國地球物理學(xué)會第八屆學(xué)術(shù)年會論文集[C];1992年

3 金紅林;夏紅;;2000年日本鳥取縣7.3級地震斷層滑動分布的研究[A];GPS技術(shù)應(yīng)用研究論文專輯[C];2007年

4 何昌榮;馬勝利;黃建國;;斷層滑動速率變化對滑動穩(wěn)定性的影響[A];中國地震學(xué)會第七次學(xué)術(shù)大會論文摘要集[C];1998年

5 任青文;王威;;基于突變理論的軟化形式對斷層滑動失穩(wěn)影響研究[A];慶祝中國力學(xué)學(xué)會成立50周年暨中國力學(xué)學(xué)會學(xué)術(shù)大會’2007論文摘要集(下)[C];2007年

6 馬勝利;(山烏)本利彥;;蒙脫石的脫水作用對斷層摩擦本構(gòu)行為的影響[A];中國地震學(xué)會第五次學(xué)術(shù)大會論文摘要集[C];1994年

7 趙國光;張超;;伴隨前兆蠕動和震后斷層滑動的準(zhǔn)靜態(tài)形變[A];第一次全國地震科學(xué)學(xué)術(shù)討論會論文摘要匯編[C];1979年

8 汪馳升;單新建;張國宏;王長林;;三維有限元模型模擬InSAR同震位移:以于田地震斷層滑動分布反演為例[A];中國地震學(xué)會空間對地觀測專業(yè)委員會2009年學(xué)術(shù)研討會論文摘要集[C];2009年

9 馬勝利;繆阿麗;;模擬斷層泥摩擦滑動速度依賴性轉(zhuǎn)換的實(shí)驗(yàn)研究[A];中國地震學(xué)會第14次學(xué)術(shù)大會專題[C];2012年

10 劉云華;汪馳升;單新建;;蘆山地震InSAR同震形變及斷層滑動分布反演初步結(jié)果[A];中國地球物理2013——第二十七專題論文集[C];2013年

相關(guān)博士學(xué)位論文 前10條

1 桂寶玲;伸展盆地構(gòu)造幾何學(xué)、運(yùn)動學(xué)[D];中國地質(zhì)大學(xué)(北京);2011年

2 陳建業(yè);汶川地震斷層帶傳輸性質(zhì)研究—對地震同震弱化作用的啟示[D];中國地震局地質(zhì)研究所;2015年

3 任雅瓊;斷層亞失穩(wěn)階段熱場演化的實(shí)驗(yàn)研究及野外應(yīng)用探索[D];中國地震局地質(zhì)研究所;2015年

4 鄒鎮(zhèn)宇;地表動態(tài)大地測量資料反映的孕震斷層變形機(jī)制研究[D];中國地震局地質(zhì)研究所;2015年

5 薛景宏;跨斷層隔震管道分析[D];中國地震局工程力學(xué)研究所;2008年

6 張國宏;斷層滑動分布與震源破裂過程聯(lián)合反演研究[D];中國地震局地質(zhì)研究所;2011年

7 王林;盆地邊界活動正斷層多尺度構(gòu)造地貌研究[D];中國地震局地質(zhì)研究所;2012年

8 楚全芝;中衛(wèi)斷裂帶第四紀(jì)中晚期運(yùn)動學(xué)研究[D];中國地震局地質(zhì)研究所;2008年

9 張雷;龍門山斷裂帶斷層巖在水熱條件下的摩擦滑動特性實(shí)驗(yàn)研究[D];中國地震局地質(zhì)研究所;2013年

10 程海英;近斷層危害場三維數(shù)值模擬及其并行處理研究[D];上海大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 王帥;DDMWPSO算法和斷層三維向錯模型研究及應(yīng)用[D];長安大學(xué);2015年

2 李超;鐵路隧道穿越活動性斷層結(jié)構(gòu)減震模型試驗(yàn)研究[D];石家莊鐵道大學(xué);2015年

3 張猛;斷層相關(guān)褶皺的三維構(gòu)造幾何學(xué)分析[D];南京大學(xué);2014年

4 周禹鑫;跨斷層管道抗震措施研究[D];東北石油大學(xué);2012年

5 白文彪;跨斷層埋地管道抗震性能的試驗(yàn)研究[D];河北理工大學(xué);2008年

6 劉哲;斷層側(cè)向封閉性評價方法及應(yīng)用[D];大慶石油學(xué)院;2010年

7 崔永權(quán);應(yīng)力擾動對斷層摩擦影響的實(shí)驗(yàn)研究[D];中國地震局地質(zhì)研究所;2006年

8 武艷軍;渭河盆地斷層滑動和轉(zhuǎn)動與地表變形關(guān)系的研究[D];長安大學(xué);2013年

9 黃元敏;載荷擾動對斷層摩擦影響的實(shí)驗(yàn)研究[D];中國地震局地質(zhì)研究所;2008年

10 荊振杰;利用斷層滑動矢量反演昆明地區(qū)構(gòu)造應(yīng)力場[D];中國地震局地殼應(yīng)力研究所;2008年



本文編號:2247354

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/diqiudizhi/2247354.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶05574***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com