基于直角復(fù)合懸臂梁的壓電振動能量回收研究
本文選題:能量回收 + 壓電效應(yīng) ; 參考:《安徽大學(xué)》2017年碩士論文
【摘要】:隨著低功耗無線電子設(shè)備的迅猛發(fā)展,如何為這些微型電子設(shè)備供能也得到了研究人員的廣泛關(guān)注。目前,無線電子設(shè)備多利用電池供電,但傳統(tǒng)的化學(xué)電池存在使用壽命有限,某些場合還存在更換難度較大的弊端。尋求新型供能方式已成為當(dāng)務(wù)之急。振動機械能普遍存在于周圍環(huán)境中,若能得到較好的回收利用就可將其作為一種潛在的能量替代方式,實現(xiàn)電子設(shè)備的自我供能,那么就可以一勞永逸地解決微電子設(shè)備對外部電源的依賴問題。本文首先論述生活中比較常見且能夠回收利用的各種能量源及能量回收的方式。其次介紹了壓電振動能量回收和近年來國內(nèi)外的研究成果與現(xiàn)狀,分析總結(jié)了各種優(yōu)化方式及其可借鑒之處。這些方式中,基于壓電效應(yīng)的振動能量回收以其能量密度高、結(jié)構(gòu)簡單、無電磁污染、易于微型化等優(yōu)點,有著十分光明的應(yīng)用前景。接下來從壓電材料出發(fā),結(jié)合壓電材料的本構(gòu)方程和振動模式的基本理論,分析了壓電振動能量回收過程的機電轉(zhuǎn)換機理,得出了理論上懸臂梁結(jié)構(gòu)輸出功率表達式并簡要討論了影響其輸出功率的因素。基于以上分析,我們對所提出的直角復(fù)合懸臂梁進行了建模仿真與結(jié)構(gòu)優(yōu)化。利用有限元的方法,結(jié)合ANSYS軟件對其進行了模態(tài)仿真,提取了前四階振動模態(tài)結(jié)果和應(yīng)變分布情況。在此基礎(chǔ)之上,得到了結(jié)構(gòu)的一階固有頻率為23.121Hz、三階固有頻率為67.898Hz。此外還進行了結(jié)構(gòu)的諧響應(yīng)分析,在1~100Hz激勵頻率范圍內(nèi),每隔1Hz進行掃頻,載荷選擇正弦振動激勵,并且忽略振型阻尼,按照固有頻率收斂顯示結(jié)構(gòu)中直梁根部壓電陶瓷片上應(yīng)變的頻率響應(yīng)。隨后討論了在結(jié)構(gòu)設(shè)計過程中,所加載的質(zhì)量塊大小、結(jié)構(gòu)副梁長度、副梁厚度等因素對直角復(fù)合懸臂梁諧振頻率的影響,以此來指導(dǎo)實驗測試中直角復(fù)合懸臂梁的實物制作。隨后結(jié)合上述研究基礎(chǔ),詳細闡述了直角復(fù)合懸臂梁的制作流程,測試了它的電壓頻率響應(yīng)和功率輸出表現(xiàn),并將其與傳統(tǒng)的懸臂梁進行對比測試,驗證了仿真分析的有效性。結(jié)果表明,在最大加速度為0.08g的正弦振動激勵下,其最大輸出功率可以達到3.4mW,而對比的傳統(tǒng)懸臂梁為2.2mW,即本文提出的直角復(fù)合懸臂梁的發(fā)電性能要優(yōu)于同樣激勵條件下的對比傳統(tǒng)懸臂梁。綜上所述,本文的研究有利于減小壓電振動能量回收裝置的體積并提高系統(tǒng)的轉(zhuǎn)換效率,對微型傳感器等電子設(shè)備實現(xiàn)自主供能具有重要意義。
[Abstract]:With the rapid development of low power wireless electronic devices, researchers pay more attention to how to power these micro electronic devices. At present, the wireless electronic equipment mostly uses the battery to supply power, but the traditional chemical battery has the limited service life, some occasions also has the shortcoming which the replacement is difficult. It is urgent to seek new energy supply methods. Vibration mechanical energy generally exists in the surrounding environment. If it can be recycled, it can be used as a potential energy substitute to realize the self-supply of energy for electronic equipment. Then the dependence of microelectronic devices on external power can be solved once and for all. This paper first discusses the various energy sources and ways of energy recovery, which are common in life and can be recycled. Secondly, the paper introduces the energy recovery of piezoelectric vibration and the research results and present situation at home and abroad in recent years, and analyzes and summarizes all kinds of optimization methods and their references. Among these methods, vibratory energy recovery based on piezoelectric effect has a bright future because of its advantages of high energy density, simple structure, no electromagnetic pollution and easy miniaturization. Then, starting from piezoelectric material, combining the constitutive equation of piezoelectric material and the basic theory of vibration mode, the mechanism of electromechanical conversion of piezoelectric vibration energy recovery process is analyzed. The expression of the output power of cantilever beam structure is obtained theoretically and the factors influencing the output power are discussed briefly. Based on the above analysis, we model and simulate the right angle composite cantilever beam and optimize its structure. The modal simulation is carried out by using finite element method and ANSYS software. The first four vibration modal results and strain distribution are extracted. On this basis, the first-order natural frequency of the structure is 23.121 Hz and the third-order natural frequency is 67.898Hz. In addition, the harmonic response of the structure is analyzed. In the range of 1~100Hz excitation frequency, every frequency sweep is carried out at 1Hz intervals, the load selects sinusoidal vibration excitation, and the mode damping is ignored. The frequency response of the strain on the piezoelectric ceramic plate at the root of the straight beam is displayed according to the natural frequency convergence. Then, the influence of the size of the mass block, the length of the auxiliary beam and the thickness of the auxiliary beam on the resonant frequency of the right-angle composite cantilever beam is discussed in the course of the structural design, so as to guide the physical fabrication of the right-angle composite cantilever beam in the experiment. Then, based on the above research basis, the fabrication process of the rectangular composite cantilever beam is described in detail, its voltage frequency response and power output performance are tested, and compared with the traditional cantilever beam, the validity of the simulation analysis is verified. The results show that under the sinusoidal vibration excitation with the maximum acceleration of 0.08g, The maximum output power can reach 3.4 MW, while the conventional cantilever beam compared with the conventional cantilever beam is 2.2 MW, that is, the power generation performance of the rectangular composite cantilever beam proposed in this paper is better than that of the conventional cantilever beam under the same excitation conditions. To sum up, the research in this paper is helpful to reduce the volume of piezoelectric vibration energy recovery device and improve the conversion efficiency of the system. It is of great significance to realize the independent energy supply for electronic devices such as micro sensors.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM619;TN384
【參考文獻】
相關(guān)期刊論文 前10條
1 劉笑寒;楊濤;閻保平;;廣域野生動物追蹤系統(tǒng)的設(shè)計與實現(xiàn)[J];集成技術(shù);2015年05期
2 賀良國;劉永斌;張連生;琚斌;潘巧生;;基于壓電激振的彈性模量測量方法[J];振動.測試與診斷;2014年06期
3 劉祥建;陳仁文;侯志偉;;蒲公英狀壓電振動能量收集裝置寬頻帶設(shè)計[J];光學(xué)精密工程;2014年07期
4 劉祥建;陳仁文;;壓電振動能量收集裝置研究現(xiàn)狀及發(fā)展趨勢[J];振動與沖擊;2012年16期
5 邊義祥;楊成華;;基于壓電材料的振動能量回收技術(shù)現(xiàn)狀綜述[J];壓電與聲光;2011年04期
6 趙娟;劉偉群;劉永斌;馮志華;;壓電等應(yīng)變梁能量回收裝置研究[J];壓電與聲光;2010年03期
7 婁利飛;楊銀堂;樊永祥;李躍進;;壓電薄膜微傳感器振動模態(tài)的仿真分析[J];振動與沖擊;2006年04期
8 婁利飛,楊銀堂,張軍琴,李躍進;Ansys在PZT壓電薄膜微傳感器壓電分析中的應(yīng)用[J];機械科學(xué)與技術(shù);2005年07期
9 姜德義,鄭拯宇,李林,任松;壓電陶瓷片耦合振動模態(tài)的ANSYS模擬分析[J];傳感技術(shù)學(xué)報;2003年04期
10 葉至碧;壓電陶瓷驅(qū)動器[J];電子元件與材料;1989年04期
,本文編號:1911170
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1911170.html