高性能升壓型電源管理芯片的研究與優(yōu)化設(shè)計(jì)
本文選題:升壓型DC-DC轉(zhuǎn)換器 + 環(huán)路控制方法; 參考:《西安電子科技大學(xué)》2015年博士論文
【摘要】:隨著微電子技術(shù)以及半導(dǎo)體工藝的迅猛發(fā)展,電源管理類芯片已廣泛應(yīng)用于計(jì)算機(jī)、通信網(wǎng)絡(luò)、汽車電子及便攜式電子設(shè)備等諸多產(chǎn)品領(lǐng)域。近年來,用戶端對(duì)電源管理類芯片性能的要求在不斷地提高,高效率、高可靠性、高集成度和低成本已經(jīng)成為DC-DC變換器的重點(diǎn)研究方向。本文緊跟市場發(fā)展動(dòng)向,以升壓型DC-DC轉(zhuǎn)換器為研究對(duì)象,著力研究了其控制理論及關(guān)鍵電路結(jié)構(gòu),針對(duì)傳統(tǒng)DC-DC電源管理芯片在效率和可靠性方面的問題,提出了相應(yīng)優(yōu)化方案和具體實(shí)現(xiàn)電路,研究成果如下。1.針對(duì)傳統(tǒng)大功率升壓型DC-DC控制器采樣電路中存在的缺陷,提出了一種新穎的高準(zhǔn)確度、快速響應(yīng)采樣電路。該電路通過片外電感的等效直流電阻來得到完整的電感電流信息,引入了一個(gè)快速響應(yīng)電路模塊來補(bǔ)償晶體管之間的工藝偏差,從而提高了采樣準(zhǔn)確度,同時(shí)提供一條額外的電流反饋回路來減小電路的響應(yīng)時(shí)間。當(dāng)電路達(dá)到平衡狀態(tài)時(shí),額外引入的電流環(huán)路上就不會(huì)再有電流通過,因此在不增加系統(tǒng)整體靜態(tài)功耗的基礎(chǔ)上就可以達(dá)到設(shè)計(jì)目的。且該電路具有較大的共模工作電壓范圍,因此適合寬輸入范圍、大功率和高效率的應(yīng)用環(huán)境。2.針對(duì)傳統(tǒng)大功率升壓型DC-DC控制器在輕負(fù)載時(shí)效率低的問題,提出了一種三模式環(huán)路控制方法的解決方案及其具體實(shí)現(xiàn)電路。由系統(tǒng)功率損耗組成的分析得知,輕負(fù)載下控制方式的不合理是造成其效率低的主要原因。此方法在傳統(tǒng)控制方式基礎(chǔ)上進(jìn)行優(yōu)化,通過三個(gè)不同的工作模式:PWM模式、Burst模式和Sleep模式之間的互相轉(zhuǎn)換,提高了輕負(fù)載時(shí)的效率。此種環(huán)路控制方案精確度高,適用于寬負(fù)載的應(yīng)用環(huán)境。3.通過對(duì)大功率升壓型DC-DC控制器等效環(huán)路模型的分析,提出了一種改進(jìn)的PCB版圖方案。對(duì)整體的布局布線進(jìn)行了修改,減小了寄生電感和寄生電容所引入的高頻噪聲,在提高系統(tǒng)穩(wěn)定性的同時(shí)也提高了效率。4.針對(duì)高精度控制、高效率、低輸入電壓的應(yīng)用方案,提出了一種具有超低啟動(dòng)電壓、小輸出電壓紋波、高效率的高性能小功率升壓型DC-DC遲滯電流模轉(zhuǎn)換器。該轉(zhuǎn)換器引入了一種新穎的超低電壓啟動(dòng)模塊來降低最小工作電壓。當(dāng)輸入電壓低于系統(tǒng)正常工作所需要的最低電壓時(shí),此模塊可以控制功率管的開關(guān)動(dòng)作,并將系統(tǒng)內(nèi)部的供電電源抬高至足夠高的電壓,從而可以使系統(tǒng)正常地工作,這也就增加了電池的使用時(shí)間。同時(shí)引入了一個(gè)新穎的雙管遲滯采樣電路來產(chǎn)生固定的電流控制遲滯窗口,此電流窗口決定了輸出電壓紋波的大小且不會(huì)隨著負(fù)載的變化而變。因此無論系統(tǒng)處于何種負(fù)載情況下都可以保證有小的輸出電壓紋波,且同時(shí)可以保證系統(tǒng)的穩(wěn)定性。此外還提出了一種自動(dòng)模式切換技術(shù),它可以通過檢測系統(tǒng)的負(fù)載大小去選擇適合的工作模式。當(dāng)負(fù)載電流較小的時(shí)候,芯片會(huì)進(jìn)入功率節(jié)省模式,此時(shí)大部分子電路以及功率管都被斷開,從而提高了系統(tǒng)的效率。5.針對(duì)模式自動(dòng)切換電流模電荷泵控制器在啟動(dòng)階段過沖電流過大的問題,提出了一種新穎的兩階段啟動(dòng)技術(shù)。從傳統(tǒng)啟動(dòng)階段的控制模式流程入手,提出了一種新穎的啟動(dòng)階段控制模式流程。引入了兩個(gè)額外啟動(dòng)階段來分別限制啟動(dòng)初期的過沖電流和模式切換階段的過沖電流。該電路所占用面積很小且容易實(shí)現(xiàn),因此適合在芯片內(nèi)進(jìn)行集成。6.模式自動(dòng)切換電荷泵的MOSFET開關(guān)在斷開的時(shí)候會(huì)引起電荷注入效應(yīng),這就導(dǎo)致在其輸出電容上會(huì)產(chǎn)生一定的誤差電壓。此誤差電壓會(huì)導(dǎo)致在輸出電壓紋波上產(chǎn)生一個(gè)高頻尖峰電壓,它不但會(huì)增加輸出電壓紋波的值,還會(huì)降低系統(tǒng)的效率。為了減小此現(xiàn)象帶來的影響,本文提出了此種電荷泵開關(guān)拓?fù)浣Y(jié)構(gòu)的一種等效模型,并且通過此模型推導(dǎo)出了一系列關(guān)于開關(guān)誤差電壓和尖峰電壓的方程式。因此可以通過調(diào)整與開關(guān)誤差電壓和尖峰電壓有關(guān)的一些參數(shù),來減小它們所帶來的不利影響。
[Abstract]:With the rapid development of microelectronic technology and semiconductor technology, power management chips have been widely used in many fields such as computer, communication network, automotive electronics and portable electronic equipment. In recent years, the requirements of the user side to power management chip performance are constantly improving, high efficiency, high reliability, high integration and low efficiency. This paper has become the key research direction of the DC-DC converter. This paper follows the trend of the market development, takes the boost type DC-DC converter as the research object, and focuses on its control theory and key circuit structure. In view of the problems of the efficiency and reliability of the traditional DC-DC power management chip, the corresponding optimization scheme and the concrete realization circuit are put forward. The research results are as follows:.1. has proposed a novel high accuracy, fast response sampling circuit for the defects in the traditional high power DC-DC controller sampling circuit. This circuit obtains the complete inductance current information through the equivalent DC resistance of the outer inductor, and introduces a fast response circuit module to compensate the crystal. The process deviation between the tubes improves the sampling accuracy and provides an additional current feedback loop to reduce the response time of the circuit. When the circuit reaches the equilibrium state, the additional current loop will not pass through the current, so the design goal can be achieved without increasing the overall static power consumption of the system. And the circuit has a large common mode voltage range, so it is suitable for wide input range, high power and high efficiency application environment.2., aiming at the low efficiency of the traditional high power DC-DC controller with light load, a solution scheme and its concrete realization circuit of the three mode loop control method are proposed. The analysis of loss composition shows that the unreasonable control mode under the light load is the main reason for its low efficiency. This method is optimized on the basis of traditional control mode, and through three different working modes: PWM mode, Burst mode and Sleep mode, the efficiency of light load is improved. This loop control scheme is improved. High precision, suitable for wide load application environment.3. through the analysis of the equivalent loop model of high power DC-DC controller, an improved PCB layout scheme is proposed. The overall layout and wiring is modified to reduce the high frequency noise introduced by the parasitic inductance and parasitic capacitance, and also to improve the stability of the system as well. High efficiency.4., aiming at the application of high precision control, high efficiency and low input voltage, presents a type of DC-DC hysteresis current mode converter with ultra-low start voltage, small output voltage ripple and high efficiency and high performance and low power. This converter introduces a novel ultra low voltage startup module to reduce the minimum operating voltage. When the input voltage is lower than the minimum voltage required for the normal operation of the system, this module can control the switching action of the power pipe and raise the power supply inside the system to a high enough voltage to make the system work normally. This also increases the use time of the battery. A novel double tube hysteresis sampling is introduced. The circuit generates a fixed current control hysteresis window that determines the size of the output voltage ripple and does not change with the change of the load. Therefore, a small output voltage ripple can be guaranteed no matter what load the system is in, and the stability of the system can be ensured at the same time. In addition, an automatic mode is proposed. It can select the suitable working mode by detecting the load size of the system. When the load current is small, the chip will enter the power saving mode. At this time, most of the sub circuits and the power pipes are disconnected, thus the efficiency of the system is improved.5. for the mode automatic switching current mode charge pump controller in start. A novel two stage starting technology is proposed in the stage of excessive overshoot current. Starting from the traditional start stage control mode flow, a novel start stage control mode flow is proposed. Two additional start-up stages are introduced to limit overshoot current and overshoot current in the mode switching stage respectively. The area occupied by the circuit is very small and easy to be realized, so the MOSFET switch suitable for the integrated.6. mode switching charge pump in the chip will cause the charge injection effect when disconnected, which causes a certain error voltage on its output capacitance. This error voltage will result in a high output voltage ripple. The frequency peak voltage not only increases the value of the output voltage ripple, but also reduces the efficiency of the system. In order to reduce the effect of this phenomenon, this paper presents an equivalent model of the switch topology of this kind of charge pump, and derives a series of equations about the voltage and peak voltage of the opening error and the peak voltage by this model. By adjusting some parameters related to switching error voltage and peak voltage, the adverse effects can be reduced.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN402
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;效率高達(dá)98%的同步升壓型控制器無需散熱器[J];電子技術(shù)應(yīng)用;2010年11期
2 黃素芳;張文超;羅友;;升壓型臨界連續(xù)模式功率因數(shù)校正技術(shù)的研究[J];杭州電子科技大學(xué)學(xué)報(bào);2011年02期
3 ;凌力爾特推出超低功率升壓型轉(zhuǎn)換器僅需8.5μA靜態(tài)電流[J];電子與電腦;2008年12期
4 劉闖,穆新華,劉迪吉;升壓型功率因數(shù)校正技術(shù)的研究和實(shí)踐[J];江蘇電機(jī)工程;1998年03期
5 ;電源[J];電子產(chǎn)品世界;2008年08期
6 Dave Salerno;通用降壓—升壓型轉(zhuǎn)換器提供多種應(yīng)用高效率[J];電子產(chǎn)品世界;2005年16期
7 應(yīng)建華;李進(jìn);;低功耗升壓型PFM DC-DC轉(zhuǎn)換器[J];微電子學(xué)與計(jì)算機(jī);2007年11期
8 紀(jì)宗南;;一節(jié)電池供電的升壓型變換器[J];集成電路應(yīng)用;1998年04期
9 張生舟;升壓型高功率因數(shù)校正技術(shù)[J];通信電源技術(shù);1999年03期
10 ;具雙半橋開關(guān)的超低功率升壓型轉(zhuǎn)換器[J];電子技術(shù)應(yīng)用;2009年06期
相關(guān)會(huì)議論文 前2條
1 常承志;付志紅;蘇向豐;;一種升壓型脈沖跨周期調(diào)制DC/DC變換器的設(shè)計(jì)[A];重慶市電機(jī)工程學(xué)會(huì)2010年學(xué)術(shù)會(huì)議論文集[C];2010年
2 李婭妮;朱樟明;楊銀堂;;一種PFM升壓型DC/DC轉(zhuǎn)換器及行為模型[A];2006北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)——通信與信息技術(shù)會(huì)議論文集(上)[C];2006年
相關(guān)重要報(bào)紙文章 前4條
1 劉金輝;升壓型DC-DC變換器MAX761[N];電子報(bào);2009年
2 成都 青化;升壓型百只LED驅(qū)動(dòng)器ZD1680[N];電子報(bào);2008年
3 成都 胥紹禹 摘譯;充分利用電池能量的升壓型DC/DC變換器[N];電子報(bào);2008年
4 廣東 杜城;大功率兩相單輸出同步升壓型DC/DC控制器LTC3787[N];電子報(bào);2012年
相關(guān)博士學(xué)位論文 前2條
1 杜含笑;高性能電源管理類集成電路的關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2016年
2 池源;高性能升壓型電源管理芯片的研究與優(yōu)化設(shè)計(jì)[D];西安電子科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 李佳佳;低壓遲滯電流模升壓型DC-DC轉(zhuǎn)換器XD1410的設(shè)計(jì)[D];西安電子科技大學(xué);2014年
2 陳希同;電流模升壓型DC-DC控制器XD1496的設(shè)計(jì)[D];西安電子科技大學(xué);2014年
3 趙玲玲;一款電流模同步升壓型DC-DC轉(zhuǎn)換器XD1407的設(shè)計(jì)[D];西安電子科技大學(xué);2014年
4 馬超;一種升壓型有源功率因數(shù)校正電路設(shè)計(jì)[D];電子科技大學(xué);2007年
5 聶博;寬輸入峰值電流模異步升壓型DC-DC轉(zhuǎn)換器XD9012的研究與設(shè)計(jì)[D];西安電子科技大學(xué);2013年
6 羅超;一種多通道升壓型LED驅(qū)動(dòng)芯片設(shè)計(jì)[D];上海交通大學(xué);2011年
7 朱立榮;單片集成升壓型DC-DC的效率分析與設(shè)計(jì)[D];西南交通大學(xué);2008年
8 朱自強(qiáng);升壓型變換器中的阻感負(fù)載特性研究[D];安徽大學(xué);2010年
9 石剛;一種PFM升壓型DC/DC變換器的設(shè)計(jì)研究[D];電子科技大學(xué);2006年
10 翟向坤;升壓型電源管理電路的內(nèi)部LDO設(shè)計(jì)[D];電子科技大學(xué);2007年
,本文編號(hào):1911136
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1911136.html