長焦距寬光譜紅外雙波段消熱差探測成像光學系統(tǒng)研究
本文選題:應用光學 切入點:光學相機 出處:《電子科技大學》2017年博士論文 論文類型:學位論文
【摘要】:隨著現(xiàn)代科學技術和探測器工藝水平的不斷發(fā)展進步,共孔徑紅外雙波段消熱差熱成像技術在空間領域和國防工業(yè)中的應用越來越廣泛。共孔徑紅外雙波段消熱差光學技術考慮了對目標探測雙波段的需求和對環(huán)境溫度變化消熱差的需求,應用不同波長的紅外波段復合探測目標,可以提高系統(tǒng)的識別能力和識別速度,同時可以在惡劣環(huán)境溫度下工作,此外在保證準確獲取目標信息提高目標跟蹤識別能力的同時,還可以降低光電探測設備的成本,減小設備的整機尺寸,減輕設備的重量,這對于空間光學儀器有著重要的意義。針對長焦距寬光譜紅外雙波段消熱差探測成像系統(tǒng),本文提出了三種基于共孔徑結(jié)構形式的光學方案,推導了初始結(jié)構計算公式給出了設計實例,最后考慮工程可實現(xiàn)性采用折反式共孔徑紅外雙波段消熱差光學系統(tǒng)結(jié)構形式,研制了滿足性能指標的折反式共孔徑紅外雙波段消熱差光學系統(tǒng),論文主要的研究內(nèi)容和貢獻綜述如下:(1)本文介紹了紅外雙波段消熱差熱成像技術的研究背景和意義,分析了溫度變化對紅外光學系統(tǒng)的影響,從曲率半徑、材料厚度、材料折射率、鏡片間隔、非球面參數(shù)、衍射面參數(shù)等方面系統(tǒng)分析了溫度變化對光學參數(shù)的影響,并建立了相應的數(shù)學模型,針對溫度變化對紅外光學系統(tǒng)的影響,給出了機電主動式、機械被動式、光學被動式三種消熱差方法,并從實現(xiàn)方法、性能、可靠性、重量、成本、環(huán)境穩(wěn)定性和可維修性等方面對三種消熱差設計方法進行了對比分析。(2)本文分析了現(xiàn)代紅外消熱差光學系統(tǒng)的特點,確定了紅外雙波段消熱差光學系統(tǒng)的幾種選型方式,提出了一種反射式長焦距寬光譜共孔徑紅外雙波段消熱差光學系統(tǒng)方案,推導了基于四個同軸反射鏡系統(tǒng)的初始結(jié)構計算公式,給出了設計實例。針對像質(zhì)要求較高的設計要求,又提出了一種共孔徑部分為反射鏡和透鏡相結(jié)合的長焦距寬光譜共孔徑紅外雙波段消熱差光學系統(tǒng)方案,推導了其初始結(jié)構計算公式,基于系統(tǒng)中出現(xiàn)的非球面拐點問題,提出了一種通過求解不同半徑處矢高對半徑的一階導數(shù)和二階導數(shù)來判斷非球面是否有拐點的方法,并在設計的長焦距寬光譜共孔徑折反射式紅外雙波段消熱差光學系統(tǒng)中進行了實例應用,取得了很好的效果。(3)本文分析了衍射光學元件的初級像差特性,探索了衍射光學元件的衍射效率,研究了衍射光學元件特殊的色散特性和溫度特性,基于衍射光學元件可對波面進行任意整形的特點,針對分光鏡在折射光路中引入的像差,提出了利用衍射光學元件來校正這些像差的思路,進行了實例驗證,并和球面光學元件和非球面光學元件的校正結(jié)果進行了對照分析,驗證了衍射光學元件校正這些像差的優(yōu)越性。基于該優(yōu)點并利用衍射光學元件特殊的色散和溫度特性,設計了一種反射/折射/衍射混合式長焦距寬光譜共孔徑紅外雙波段消熱差光學系統(tǒng),取得了較好的結(jié)果。(4)本文分析了鬼像對光學系統(tǒng)成像的影響,提出了一種快速分析光學系統(tǒng)鬼像的方法,作為分析實例對折反射式長焦距寬光譜共孔徑紅外雙波段消熱差光學系統(tǒng)進行了鬼像分析。(5)本文對上述三種光學方案進行了對比分析,考慮工程可實現(xiàn)性確定采用共孔徑紅外雙波段折反射式方案,并研制了長焦距寬光譜共孔徑折反射式紅外雙波段消熱差光學系統(tǒng),進行了系統(tǒng)集成,搭建測試平臺利用能量集中度作為評價標準對共孔徑紅外雙波段消熱差光學系統(tǒng)進行了性能測試,驗證了所述方案的有效性。
[Abstract]:With the development of modern science and technology and the detector technological level, application and common aperture of athermal thermal imaging technology in the field of space and defense industry more widely. A common aperture dual band infrared athermal optical technology of dual band target detection requirements and athermalization of demand the change of environmental temperature, infrared target detection using composite of different wavelengths, which can improve the system's recognition ability and speed, and can work in harsh environment, in addition to ensure accurate target information to improve the target tracking and recognition ability at the same time, but also can reduce the cost of the photoelectric detection equipment, reduce the size of equipment. Reduce the weight of the device, which is of great significance for space optical instrument. According to the length of the wide spectrum of athermal imaging detection system, this paper. The three kinds of common aperture optical scheme structure based on derivation of the initial structure gives the calculation formula of design examples, consider the implementation of the final common aperture catadioptric infrared dual band athermal optical system structure engineering, has been developed to meet the performance of common aperture catadioptric infrared dual band athermal the optical system, the main research contents and contributions are summarized as follows: (1) this paper introduces athermal thermal imaging technology research background and significance, analyzes the influence of temperature change on the infrared optical system, the radius of curvature, thickness, refractive index, lens interval, aspheric parameters, diffraction surface parameters were analyzed systematically the effect of temperature on the optical parameters, and the corresponding mathematical model is established, the effect of temperature on the infrared optical system, mechanical and electrical machinery are active are given. Type, three kinds of optical passive athermalisation methods, and the implementation method, performance, reliability, weight, cost, stability and maintainability of three kinds of analyzed athermalisation methods. (2) this paper analyzes the characteristics of thermal dissipation of modern infrared optical system, identified several the selection method of athermal optical system, proposes a reflective telephoto wide spectrum of common aperture dual band infrared athermal optical system, deduced the formula of initial structure of four coaxial mirror system based on design examples are given. According to the design requirements of high quality as required, and a common aperture part reflector and lens combination of long focal length and wide spectrum of common aperture dual band infrared athermal optical system, deduces the calculation formula of the initial structure, aspheric the turn off system based on Some problems, propose a solution by different radius vector of the radius of a high order derivative and two order derivative to determine whether there is a non spherical inflection point method and common aperture catadioptric infrared dual band athermal optical system of wide spectral distance with examples should be made in the design of long focal length. Good results. (3) this paper analyzes the aberration characteristic of diffractive optical elements, to explore the efficiency of diffractive optical elements, the dispersion characteristics and the temperature characteristics of the special characteristics of the diffractive optical element, diffractive optical elements can be arbitrary shaping of the wavefront aberration based on the spectroscope in the refraction of light in the road and put forward to correct these aberrations using diffractive optical element method, verified, and calibration results of spherical optical element and aspheric surface were compared and analyzed, verified the diffraction light The superiority of the element for correcting these aberrations. The advantages of using the dispersion and temperature characteristics of diffractive optical elements based on the special design of a reflection / refraction / diffraction hybrid telephoto wide spectrum of common aperture athermal optical system, and achieved good results. (4) this paper analyzes the ghost image the influence of the optical imaging system, this paper presents a fast method for the analysis of optical system of ghost images, as examples of para catadioptric telephoto wide spectrum of common aperture dual band infrared athermal optical system for the analysis of ghost image. (5) this paper makes a comparative analysis of the three kinds of optical scheme, considering the implementation of determine the use of common aperture dual band infrared catadioptric project, and developed a wide spectrum of long focal length common aperture catadioptric infrared dual band athermal optical system, the system integration, build the test platform can use The volume concentration is used as an evaluation criterion to test the performance of a common aperture infrared dual band heat dissipation optical system, and the effectiveness of the proposed scheme is verified.
【學位授予單位】:電子科技大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TN216
【參考文獻】
相關期刊論文 前10條
1 孫欣;胡永力;;光學反射式拼接型遙感器拼接區(qū)鬼像研究[J];航天返回與遙感;2016年02期
2 白瑜;廖志遠;廖勝;任棲峰;陳為;林嫵媚;邢廷文;蔣亞東;;共孔徑消熱差紅外雙波段光學系統(tǒng)[J];光學精密工程;2016年02期
3 朱楊;張新;伍雁雄;張建萍;史廣維;王靈杰;;紫外星敏感器光學系統(tǒng)設計及其鬼像分析[J];紅外與激光工程;2016年01期
4 江倫;胡源;董科研;安巖;王超;佟首峰;;紅外雙波段光學系統(tǒng)被動式消熱差設計[J];紅外與激光工程;2015年11期
5 白瑜;廖志遠;李華;程習敏;邢廷文;蔣亞東;;折反射中波紅外探測無熱化成像系統(tǒng)設計分析[J];紅外與激光工程;2015年02期
6 張葆;崔恩坤;洪永豐;;紅外雙波段雙視場共光路光學系統(tǒng)[J];光學精密工程;2015年02期
7 曲銳;鄧鍵;;紅外雙波段雙視場消熱差光學系統(tǒng)設計中消波段間色差條件(方法)的研究[J];光學學報;2015年01期
8 白瑜;邢廷文;蔣亞東;;國外紅外光譜連續(xù)變焦成像系統(tǒng)的研究進展[J];光譜學與光譜分析;2014年12期
9 石榮寶;季軼群;趙知誠;周建康;沈為民;唐敏學;;適于逆光條件的消鬼像鏡頭光學設計與實驗驗證[J];光學學報;2014年09期
10 白瑜;邢廷文;蔣亞東;廖志遠;程習敏;;長焦距高分辨率紅外兩檔變焦光學系統(tǒng)設計[J];紅外與激光工程;2014年08期
相關博士學位論文 前2條
1 劉英;基于HDE的MWIR/LWIR雙波段成像光譜系統(tǒng)的研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2010年
2 劉琳;中波紅外大相對孔徑非制冷熱像儀光學系統(tǒng)的研究[D];蘇州大學;2010年
相關碩士學位論文 前6條
1 李利;雙波段紅外光學系統(tǒng)的無熱化設計[D];南京航空航天大學;2012年
2 白瑜;非制冷紅外熱成像折衍兩檔變焦光學系統(tǒng)研究[D];中國科學院研究生院(西安光學精密機械研究所);2009年
3 張浩斌;具有二元光學校正元件的反射式光學系統(tǒng)研究[D];哈爾濱工業(yè)大學;2008年
4 楊正;制冷式中波紅外凝視變焦光學系統(tǒng)研究[D];中國科學院研究生院(西安光學精密機械研究所);2008年
5 宋巖峰;現(xiàn)代紅外光學系統(tǒng)設計[D];西安電子科技大學;2008年
6 張羽;被動熱補償型折衍混合紅外光學系統(tǒng)的研制[D];華中科技大學;2005年
,本文編號:1652860
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1652860.html