大型汽輪機(jī)轉(zhuǎn)子—刷式密封系統(tǒng)動(dòng)力學(xué)特性研究
[Abstract]:Modern thermal power generation technology has promoted the development of high performance turbine mechanical sealing technology because of the higher and higher technical and economic requirements of power plant. Because the advanced brush sealing technology can significantly improve the reliability and working efficiency of large thermal power units, brush sealing has been more and more used in power plants. However, after a long period of operation, it is found that the friction heat between the brush seal and the rotating shaft not only affects the wire brushing, and then affects the sealing characteristics and flow field characteristics, but also affects the natural vibration characteristics of the rotor. Therefore, it is necessary to study the flow field characteristics of brush seal and the fluid-solid coupling vibration characteristics of rotor-brush seal system, which also reflects important scientific value and practical significance. In this paper, the relationship between the geometry and mechanics of a single brush wire and the rotor is studied, and then the expression of the force acting on the rotor by the whole circle brush wire is obtained. Then, by analogy with Thomas eight-parameter model, the rotor-brush seal force is fitted by quadratic multinomial fitting, and the expression of support stiffness coefficient can be obtained according to Taylor formula, and the rotor-brush seal stiffness model is deduced, which is easy to be applied. The simulation is carried out, which provides the model basis for the modal analysis of rotor-brush seal-bearing system in chapter 3 and chapter 5. The finite element analysis method and finite element equation are introduced. at the same time, the corresponding modeling element is briefly introduced, and then the finite element model is established according to the actual 10OOMW unit of a power plant. The natural frequency and vibration mode are solved by modal analysis without thermal stress and centrifugal force. The finite element numerical simulation results are compared with the data provided by the power plant, and it is found that the simulation results are more accurate, which verifies the correctness of the model and lays a foundation for the modal analysis under the action of fluid-solid coupling in the fifth chapter. The flow field characteristics of rotor-brush seal system are studied. The numerical analysis model of porous media is established, and the viscous resistance coefficient and inertia resistance coefficient of brush seal are calculated by using empirical formula, and then the leakage rate of brush seal outlet is solved by using FLUENT module in ANSYS Workbench collaborative platform. Compared with the experimental data in the literature, the rationality and correctness of using this method to calculate the resistance coefficient are indirectly verified. Then the flow field and temperature field of brush seal are analyzed. at the same time, the effects of specific pressure and rotating speed on the temperature field and the effects of pressure difference, rotating speed, interference and friction heat flow on the maximum temperature are studied. The effect of fluid-thermal-structure coupling on the stress and deformation of rotor-brush seal system is studied. On the basis of the flow field analysis in the third chapter, the fluid-thermal-structure unidirectional fluid-solid coupling simulation is carried out by using FLUENT module and Static Structural module, with emphasis on the simultaneous loading of flow field temperature load and centrifugal force load. The influence of rotating speed and interference on the stress and deformation of rotor. The modal analysis of rotor with thermal stress and centrifugal force is carried out by using Moda film block and Mechanical APDI module, and compared with the mode without fluid-solid coupling in chapter 3, the influence of fluid-solid coupling on the natural vibration characteristics of rotor is analyzed.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM621
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吉桂明;汽輪機(jī)轉(zhuǎn)子的撓曲及其解決途徑[J];熱能動(dòng)力工程;2003年06期
2 李宏強(qiáng);張超群;孫永瑩;;長(zhǎng)期運(yùn)行后汽輪機(jī)轉(zhuǎn)子持久強(qiáng)度性能研究[J];東北電力技術(shù);2007年12期
3 王上一;研究汽輪機(jī)轉(zhuǎn)子振動(dòng)特性以早期發(fā)現(xiàn)事故[J];發(fā)電設(shè)備;1987年03期
4 楊昆;張保衡;;汽輪機(jī)轉(zhuǎn)子安全壽命曲線制定方法[J];華北電力學(xué)院學(xué)報(bào);1988年04期
5 楊昆,呂躍剛,袁軍,許偉;汽輪機(jī)轉(zhuǎn)子熱應(yīng)力分析與控制方法[J];河北電力技術(shù);1993年05期
6 裴世英,,李續(xù)軍;汽輪機(jī)轉(zhuǎn)子壽命的監(jiān)測(cè)與管理[J];熱力發(fā)電;1995年01期
7 周廣順,田國(guó)成,張超杰;防止汽輪機(jī)轉(zhuǎn)子永久性彎曲探討[J];中國(guó)電力;1997年12期
8 張延峰,盛偉,杜祖成,夏永軍,郭玉雙;對(duì)汽輪機(jī)轉(zhuǎn)子呈負(fù)推力的辨析[J];沈陽(yáng)電力高等?茖W(xué)校學(xué)報(bào);2000年01期
9 周桐,徐健學(xué);汽輪機(jī)轉(zhuǎn)子裂紋的時(shí)頻域診斷研究[J];動(dòng)力工程;2001年02期
10 郭鈺鋒,武志文,于達(dá)仁;200MW汽輪機(jī)轉(zhuǎn)子泊松效應(yīng)的參數(shù)識(shí)別[J];汽輪機(jī)技術(shù);2001年01期
相關(guān)會(huì)議論文 前10條
1 工藝處;雷文;;汽輪機(jī)轉(zhuǎn)子制造技術(shù)研究(摘要)[A];2010全國(guó)機(jī)電企業(yè)工藝年會(huì)《上海電氣杯》征文論文集[C];2010年
2 岳建海;黃毅;;汽流和油膜作用下的汽輪機(jī)轉(zhuǎn)子振動(dòng)特性研究[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第二分冊(cè))[C];2009年
3 楊宇;;汽輪機(jī)轉(zhuǎn)子溫度計(jì)算中慣性環(huán)節(jié)系數(shù)確定方法[A];超超臨界機(jī)組技術(shù)交流2013年會(huì)論文集[C];2013年
4 張立君;劉景春;王九崇;;應(yīng)力松馳法直軸技術(shù)在800MW汽輪機(jī)轉(zhuǎn)子上的應(yīng)用[A];全國(guó)火電600MWe級(jí)機(jī)組能效對(duì)標(biāo)及競(jìng)賽第十四屆年會(huì)論文集[C];2010年
5 謝永慧;鄧實(shí);張荻;豐鎮(zhèn)平;;汽輪機(jī)轉(zhuǎn)子焊接的三維有限元數(shù)值模型研究[A];2009年中國(guó)動(dòng)力工程學(xué)會(huì)透平專業(yè)委員會(huì)2009年學(xué)術(shù)研討會(huì)論文集[C];2009年
6 辛?xí)暂x;曹樹(shù)謙;;大型汽輪機(jī)轉(zhuǎn)子在蒸汽力和油膜力作用下非線性動(dòng)力學(xué)特性計(jì)算研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
7 劉華鋒;王煒哲;蔣浦寧;劉應(yīng)征;陳漢平;;超超臨界汽輪機(jī)轉(zhuǎn)子蠕變對(duì)低周疲勞損傷的影響分析[A];第十五屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議摘要及論文集[C];2010年
8 高麗華;孫盤康;王國(guó)忠;趙宏偉;王曉良;楊建明;;GE 350MW汽輪機(jī)轉(zhuǎn)子突發(fā)性振動(dòng)故障診斷與處理[A];全國(guó)火電大機(jī)組(300MW級(jí))競(jìng)賽第三十五屆年會(huì)論文集[C];2006年
9 蔡正德;;34CrNi_3Mo汽輪機(jī)轉(zhuǎn)子主軸熱處理工藝的改進(jìn)[A];第九屆全國(guó)化學(xué)工藝學(xué)術(shù)年會(huì)論文集[C];2005年
10 趙景輝;;汽輪機(jī)轉(zhuǎn)子軸頸劃傷原因及處理[A];全國(guó)火電200MW級(jí)機(jī)組技術(shù)協(xié)作會(huì)第24屆年會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 梁娟 周一工;汽輪機(jī)轉(zhuǎn)子材料的熱處理工藝評(píng)估研究[N];世界金屬導(dǎo)報(bào);2012年
相關(guān)博士學(xué)位論文 前4條
1 王坤;大型汽輪機(jī)轉(zhuǎn)子壽命問(wèn)題研究[D];華中科技大學(xué);2004年
2 呂方明;汽輪機(jī)轉(zhuǎn)子低周疲勞壽命評(píng)價(jià)關(guān)鍵技術(shù)問(wèn)題研究[D];華中科技大學(xué);2014年
3 孫永健;大型汽輪機(jī)轉(zhuǎn)子低周疲勞損傷評(píng)估問(wèn)題研究[D];上海交通大學(xué);2014年
4 朱明亮;汽輪機(jī)轉(zhuǎn)子鋼近門檻值區(qū)的裂紋擴(kuò)展與超高周疲勞行為研究[D];華東理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 江峰;汽輪機(jī)轉(zhuǎn)子故障狀態(tài)下的振動(dòng)仿真分析[D];武漢理工大學(xué);2009年
2 楊鳳;汽輪機(jī)轉(zhuǎn)子的熱應(yīng)力分析和疲勞壽命研究[D];沈陽(yáng)工業(yè)大學(xué);2007年
3 柴保桐;大型汽輪機(jī)轉(zhuǎn)子—刷式密封系統(tǒng)動(dòng)力學(xué)特性研究[D];東南大學(xué);2015年
4 白云;600MW汽輪機(jī)轉(zhuǎn)子低周疲勞壽命計(jì)算及研究[D];長(zhǎng)沙理工大學(xué);2009年
5 周亞武;汽輪機(jī)轉(zhuǎn)子有限元建模及動(dòng)力學(xué)分析[D];華中科技大學(xué);2009年
6 甘霖;基于有限單元法的汽輪機(jī)轉(zhuǎn)子壽命評(píng)估研究[D];武漢理工大學(xué);2011年
7 梁天杰;大型汽輪機(jī)轉(zhuǎn)子熱狀態(tài)在線監(jiān)測(cè)系統(tǒng)[D];華北電力大學(xué);2001年
8 王堯明;國(guó)產(chǎn)300MW汽輪機(jī)轉(zhuǎn)子壽命分配與管理研究[D];武漢大學(xué);2004年
9 張濤;汽輪機(jī)轉(zhuǎn)子—軸承系統(tǒng)穩(wěn)定性仿真分析及優(yōu)化方法研究[D];武漢理工大學(xué);2008年
10 靳向往;汽輪機(jī)轉(zhuǎn)子工作熱變形預(yù)測(cè)及其熱跑工裝研制[D];哈爾濱工業(yè)大學(xué);2010年
本文編號(hào):2482411
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2482411.html