【摘要】:隨著我國“西電東送、南北互供、全國聯(lián)網(wǎng)”的電力發(fā)展戰(zhàn)略的實(shí)施,電力系統(tǒng)的發(fā)展越來越快。在大電網(wǎng)時(shí)代,高壓直流輸電擁有輸電距離遠(yuǎn),輸電容量大,輸電靈活優(yōu)點(diǎn),直流輸電作為交流輸電的有力補(bǔ)充,因而在大容量遠(yuǎn)距離電力輸送中應(yīng)用越來越廣泛。隨著高壓直流輸電傳輸容量,在電網(wǎng)中所占的比例越來越大,直流輸電為受端交流系統(tǒng)提供電力的同時(shí),換流站消耗的無功功率是直流系統(tǒng)所傳輸有功功率的40%-60%,因?yàn)閾Q流站的無功功率消耗,換流站的交流母線電壓波動(dòng)將會(huì)給系統(tǒng)的穩(wěn)定運(yùn)行帶來較大的影響。因此,本文重點(diǎn)針對(duì)換流站交流母線電壓的波動(dòng)問題,對(duì)高壓直流輸電系統(tǒng)換相失敗故障的解決方法進(jìn)行了研究,具體研究內(nèi)容如下: 首先本文針對(duì)高壓直流輸電系統(tǒng)換流站的一、二次構(gòu)成,對(duì)高壓直流輸電系統(tǒng)常見的直流閉鎖故障進(jìn)行概述,特別對(duì)換相失敗發(fā)生的機(jī)理以及影響進(jìn)行了分析,給出了換相失敗的預(yù)防控制措施。 針對(duì)交流母線電壓波動(dòng)的問題,利用高壓直流輸電系統(tǒng)中換流站交流母線電壓穩(wěn)定的判據(jù),對(duì)換流器的不同控制方式的作用進(jìn)行分析,針對(duì)系統(tǒng)運(yùn)行時(shí)受擾動(dòng)的問題,整流器和逆變器選擇不同的控制策略,其中逆變側(cè)主要采用定電壓控制;針對(duì)換流站無功消耗問題,分析了無功補(bǔ)償?shù)谋匾?針對(duì)逆變側(cè)交流母線電壓波動(dòng)問題,無功補(bǔ)償裝置選擇定電壓控制,能實(shí)時(shí)調(diào)整控制器的輸出導(dǎo)納值,快速的調(diào)節(jié)晶閘管的觸發(fā)角,使其能快速的調(diào)節(jié)控制器的無功功率輸出,達(dá)到穩(wěn)定電壓的目的。 最后在PSCAD/EMTDC中搭建仿真平臺(tái),對(duì)逆變側(cè)的定電壓控制和換流站進(jìn)行無功補(bǔ)償進(jìn)行仿真,仿真結(jié)果驗(yàn)證了上述控制和無功補(bǔ)償?shù)挠行院涂尚行浴?br/>
[Abstract]:With the implementation of the electric power development strategy of "power transmission from west to east, power supply from north to south, and national interconnection", the power system is developing more and more rapidly. In the era of large power grid, HVDC transmission has the advantages of long transmission distance, large transmission capacity and flexible transmission. As a powerful complement of AC transmission, HVDC is more and more widely used in large capacity long-distance power transmission. With the transmission capacity of HVDC transmission, the proportion of HVDC transmission in the power network is increasing. At the same time, the DC transmission provides power to the receiving AC system. The reactive power consumed by the converter station is 40 to 60 percent of the active power transmitted by the DC system. Because of the reactive power consumption in the converter station and the fluctuation of the AC bus voltage in the converter station, the stable operation of the system will be greatly affected. Therefore, aiming at the voltage fluctuation of AC bus in converter station, this paper studies the solution of commutation failure in HVDC transmission system. The specific research contents are as follows: firstly, aiming at the primary and secondary components of HVDC system converter station, the common DC lock-in faults of HVDC transmission system are summarized in this paper. Especially, the mechanism and influence of commutation failure are analyzed, and the prevention and control measures of commutation failure are given. Aiming at the problem of voltage fluctuation of AC busbar, using the criterion of voltage stability of AC bus in HVDC transmission system, this paper analyzes the function of different control mode of converter, aiming at the problem that the system is disturbed when it is running. The rectifier and inverter choose different control strategies, in which the inverter side mainly adopts constant voltage control, aiming at the problem of reactive power consumption in converter station, the necessity of reactive power compensation is analyzed, and the voltage fluctuation of AC bus on inverter side is analyzed. The reactive power compensation device can adjust the output admittance of the controller in real time and the trigger angle of the thyristor quickly, so that the reactive power output of the controller can be adjusted quickly, and the stable voltage can be achieved. Finally, a simulation platform is built in PSCAD/EMTDC to simulate the constant voltage control of inverter side and reactive power compensation of converter station. The simulation results verify the effectiveness and feasibility of the above control and reactive power compensation.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM721.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉明波,程勁暉,程瑩;交直流并聯(lián)電力系統(tǒng)動(dòng)態(tài)電壓穩(wěn)定性分析[J];電力系統(tǒng)自動(dòng)化;1999年16期
2 項(xiàng)玲,鄭建勇,胡敏強(qiáng);多端和多饋入直流輸電系統(tǒng)中換相失敗的研究[J];電力系統(tǒng)自動(dòng)化;2005年11期
3 白巖;陳輝祥;王仲鴻;;直流雙極閉鎖故障下提高暫態(tài)電壓穩(wěn)定性策略探討[J];電力系統(tǒng)自動(dòng)化;2006年15期
4 徐梅梅;李興源;白加林;賀洋;劉建;;交直流并聯(lián)系統(tǒng)的換流母線電壓穩(wěn)定性分析[J];電力系統(tǒng)自動(dòng)化;2009年07期
5 歐開健,任震,荊勇;直流輸電系統(tǒng)換相失敗的研究(一)——換相失敗的影響因素分析[J];電力自動(dòng)化設(shè)備;2003年05期
6 周長春,徐政;聯(lián)于弱交流系統(tǒng)的HVDC故障恢復(fù)特性仿真分析[J];電網(wǎng)技術(shù);2003年11期
7 吳萍;林偉芳;孫華東;李柏青;易俊;;多饋入直流輸電系統(tǒng)換相失敗機(jī)制及特性[J];電網(wǎng)技術(shù);2012年05期
8 張文亮,胡毅;發(fā)展特高壓交流輸電,促進(jìn)全國聯(lián)網(wǎng)[J];高電壓技術(shù);2003年08期
9 黃紹平,彭曉,浣喜明;基于MATLAB的高壓直流輸電系統(tǒng)的建模與仿真[J];高電壓技術(shù);2004年03期
10 吳曄,殷威揚(yáng);逆變側(cè)熄弧角GAMMA-KICK控制仿真計(jì)算[J];高電壓技術(shù);2005年02期
,
本文編號(hào):
2222225
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2222225.html