風(fēng)電與先進(jìn)絕熱壓縮空氣儲能技術(shù)的系統(tǒng)集成與仿真研究
本文選題:先進(jìn)絕熱壓縮空氣儲能 + 風(fēng)力發(fā)電。 參考:《中國科學(xué)院研究生院(工程熱物理研究所)》2014年博士論文
【摘要】:間歇性、波動(dòng)性和非周期性是風(fēng)能的重要特征,也是造成風(fēng)力發(fā)電系統(tǒng)不穩(wěn)定性的重要原因。隨著風(fēng)電行業(yè)的快速發(fā)展,風(fēng)電“棄風(fēng)”現(xiàn)象越來越嚴(yán)重。壓縮空氣儲能技術(shù)被認(rèn)為是解決風(fēng)電“棄風(fēng)”問題的重要技術(shù)途徑之一。然而傳統(tǒng)壓縮空氣儲能技術(shù)需要使用化石燃料,會造成環(huán)境污染等問題,同時(shí)風(fēng)電與壓縮空氣儲能技術(shù)集成應(yīng)用的相關(guān)研究還存在較大空白。因此,設(shè)計(jì)與研發(fā)綠色、高效、無污染的新型壓縮空氣(氣體)儲能系統(tǒng),開展風(fēng)電與壓縮空氣(氣體)儲能系統(tǒng)的集成應(yīng)用研究,對于提高電網(wǎng)運(yùn)行的安全穩(wěn)定性和風(fēng)電機(jī)組利用率,減少風(fēng)電“棄風(fēng)”,推進(jìn)儲能技術(shù)的發(fā)展具有重要意義。本文結(jié)合理論分析和仿真模擬的方法開展相關(guān)研究。首先,通過對壓縮空氣儲能技術(shù)發(fā)展現(xiàn)狀的研究分析,以先進(jìn)絕熱壓縮空氣儲能(Advanced Adiabatic Compressed Air Energy Storage,簡稱AA-CAES)系統(tǒng)作為本文主要研究對象。根據(jù)儲能系統(tǒng)儲氣室部件的熱力學(xué)特性,構(gòu)建四種通用性儲氣室模型(定容絕熱模型、定容等溫模型、定壓絕熱模型、定壓等溫模型)。在得到四種儲氣室模型熱力學(xué)特性的基礎(chǔ)上,建立AA-CAES系統(tǒng)模型并對采用不同儲氣室模型時(shí)系統(tǒng)的熱力學(xué)特性進(jìn)行對比和分析,完成系統(tǒng)與核心部件、參數(shù)之間的關(guān)聯(lián)性分析。在把握AA-CAES系統(tǒng)熱力學(xué)特性的基礎(chǔ)上,結(jié)合熱力學(xué)分析和仿真模擬方法,以Matlab/Simulink為仿真模擬平臺,建立了風(fēng)模型、風(fēng)電機(jī)模型和AA-CAES系統(tǒng)模型,并完成模型之間的集成耦合。構(gòu)建了集成系統(tǒng)的能量轉(zhuǎn)化和傳遞模型,對不同風(fēng)況條件下集成系統(tǒng)內(nèi)的能量轉(zhuǎn)化和傳遞特性進(jìn)行了分析和研究。研究結(jié)果顯示,集成系統(tǒng)內(nèi)主要涉及風(fēng)能、機(jī)械能、電能、空氣內(nèi)能和熱能的轉(zhuǎn)化;影響集成系統(tǒng)整體效率的主要部件(過程)為風(fēng)電機(jī)與AA-CAES系統(tǒng)儲能階段。在穩(wěn)定風(fēng)況下,低風(fēng)速時(shí)風(fēng)能轉(zhuǎn)化為熱能的比例較高,高風(fēng)速時(shí)風(fēng)能轉(zhuǎn)化為空氣內(nèi)能的比例較高,且風(fēng)速發(fā)生變化時(shí),風(fēng)能轉(zhuǎn)化為熱能和空氣內(nèi)能的變化趨勢相反。此外,對波動(dòng)風(fēng)況下集成系統(tǒng)內(nèi)的能量轉(zhuǎn)化和傳遞特性研究發(fā)現(xiàn),波動(dòng)風(fēng)況主要影響風(fēng)電機(jī)部分的能量轉(zhuǎn)化和與熱能相關(guān)的能量轉(zhuǎn)化過程,對空氣內(nèi)能的影響較小;從過程角度看,在AA-CAES系統(tǒng)儲能階段,壓氣機(jī)效率會影響儲能階段不同形式能量轉(zhuǎn)化效率的變化趨勢。為開發(fā)AA-CAES技術(shù)的應(yīng)用潛力,本文開展了AA-CAES系統(tǒng)應(yīng)用于分布式能源領(lǐng)域的研究工作;贏A-CAES系統(tǒng)概念,研究提出了一種能夠?qū)崿F(xiàn)多種不同供能模式的分布式能源系統(tǒng)模型,給出了系統(tǒng)處于不同供能模式下的判定條件。此外,結(jié)合能量和(?)分析方法,研究了系統(tǒng)的供能特性和部件損失情況,同時(shí)對系統(tǒng)供能模式與系統(tǒng)主要參數(shù)(透平機(jī)械效率、壓比、換熱器效能等)之間的關(guān)聯(lián)性進(jìn)行了分析。研究結(jié)果顯示,系統(tǒng)的供能(冷、熱、電)量、供能效率與系統(tǒng)儲熱器中的熱量分配情況直接相關(guān);在不同供能模式下,各部件(?)損失占總(?)損失的比例有所不同。當(dāng)系統(tǒng)處于不同的供能模式時(shí),系統(tǒng)參數(shù)的變化對效率等參數(shù)的影響程度有所差異。從(?)角度來看,透平機(jī)械效率、換熱器效能的升高均可以減少系統(tǒng)的(?)損失,提升系統(tǒng)的總(?)效率。最后,本文以二氧化碳為工作介質(zhì)開展了新型儲能系統(tǒng)的設(shè)計(jì)和優(yōu)化研究。文中對以二氧化碳為介質(zhì)的熱電儲能系統(tǒng)進(jìn)行了熱力學(xué)建模和分析工作,分別從循環(huán)角度和實(shí)際運(yùn)行角度探討了系統(tǒng)、循環(huán)、部件與參數(shù)之間的關(guān)聯(lián)性;比較了循環(huán)角度和實(shí)際運(yùn)行角度下熱電儲能系統(tǒng)熱力學(xué)特性的差異性和關(guān)聯(lián)性,為熱電儲能系統(tǒng)的優(yōu)化提供了理論支持。此外,以朗肯循環(huán)和布雷頓循環(huán)為基礎(chǔ),研究提出了多種以二氧化碳為工作介質(zhì)的新型儲能系統(tǒng)。其中,以朗肯循環(huán)為基礎(chǔ)的超(跨)臨界C02儲能系統(tǒng)可以風(fēng)電棄風(fēng)為儲能階段的能量來源,同時(shí)利用太陽能保證系統(tǒng)在釋能階段的能量輸出;基于朗肯循環(huán)和電壓縮制冷循環(huán)的集成型儲能系統(tǒng)可以有效提高風(fēng)電棄風(fēng)利用率,同時(shí)該系統(tǒng)有應(yīng)用于分布式供能領(lǐng)域的潛力;基于布雷頓循環(huán)的超(跨)臨界C02儲能系統(tǒng)利用儲熱技術(shù)避免了輔助供熱,可以達(dá)到較高的系統(tǒng)效率。以C02為工作介質(zhì)的新型儲能系統(tǒng)為可再生能源的高效利用與儲能技術(shù)的發(fā)展提供了新途徑和新方案。
[Abstract]:Intermittent, undulation and non periodicity are the important characteristics of wind energy and also an important reason for the instability of wind power generation system. With the rapid development of wind power industry, the phenomenon of wind power "abandoning wind" is becoming more and more serious. Compressed air energy storage technology is considered as one of the important technical ways to solve wind power "abandoning the wind". Compressed air energy storage technology needs to use fossil fuels, which will cause environmental pollution and other problems. At the same time, there is a large gap in the related research on the integrated application of wind power and compressed air energy storage technology. Therefore, the design and development of a new type of compressed air (gas) energy storage system with green, high efficiency and no pollution is designed and developed, and the wind power and compressed air (gas) energy storage system is carried out. Integrated application research is of great significance for improving the safety and stability of the power grid and the utilization rate of wind power units, reducing wind power "abandoning the wind" and promoting the development of energy storage technology. This paper carries out related research with the method of theoretical analysis and Simulation simulation. First, the research and analysis of the present situation of the development of compressed air energy storage technology is carried out. The Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) system is used as the main research object in this paper. According to the thermodynamic characteristics of the gas storage chamber components of the energy storage system, four kinds of general gas storage model (fixed capacity adiabatic model, constant volume isothermal model, constant pressure adiabatic model, constant pressure model) are constructed. On the basis of the thermodynamic characteristics of the four gas storage chamber models, the AA-CAES system model is established and the thermodynamic properties of the system are compared and analyzed in the use of different gas storage chamber models. The correlation analysis between the system and the core components and the parameters is completed. On the basis of the thermodynamic characteristics of the AA-CAES system, the thermodynamic analysis is combined with the thermodynamic analysis. The simulation simulation method, taking the Matlab/Simulink as the simulation platform, established the wind model, the wind turbine model and the AA-CAES system model, and completed the integrated coupling between the models. The energy conversion and transfer model of the integrated system was constructed, and the energy conversion and transmission characteristics in the integrated system under different wind conditions were analyzed and studied. The results show that the integrated system mainly involves the transformation of wind energy, mechanical energy, electric energy, air internal energy and heat energy. The main components that affect the overall efficiency of the integrated system are the energy storage stage of the wind turbine and the AA-CAES system. In the stable wind condition, the ratio of wind energy to heat energy is higher when the low wind speed is stable, and the wind energy is converted into air when the wind speed is high. When the ratio of internal energy is high and the wind speed changes, the change trend of wind energy conversion into heat energy and air internal energy is opposite. In addition, the study of energy conversion and transfer characteristics in the integrated system under fluctuating wind shows that the fluctuating wind state mainly affects the energy conversion of the wind turbine part and the energy conversion process related to the heat energy, and the internal energy of the air. In the AA-CAES system storage stage, the compressor efficiency will affect the change trend of different forms of energy conversion efficiency in the energy storage phase from the point of view of the process. In order to develop the potential of AA-CAES technology, this paper has carried out the research work on the application of AA-CAES system to the field of distributed energy. Based on the concept of AA-CAES system, the research is put forward. A distributed energy system model can be realized in various different energy supply modes, and the conditions of the system under different energy supply modes are given. In addition, the energy supply and component loss of the system are studied by combining energy and (?) analysis methods. At the same time, the system energy supply mode and the main parameters of the system (turbine efficiency, pressure ratio, pressure ratio) are also given. The correlation between the efficiency of the heat exchanger and so on is analyzed. The results show that the system's energy supply (cold, heat, electricity), the energy supply efficiency is directly related to the heat distribution in the system heat exchanger; in different energy supply modes, the proportion of the loss to the total (?) loss is different. When the system is in different energy supply modes, the system is in a different mode. The effect of the change of parameters on the efficiency and other parameters is different. From the point of view, the mechanical efficiency of the turbine and the increase of the heat exchanger efficiency can reduce the loss of the system and improve the total (?) efficiency of the system. Finally, the design and optimization of a new energy storage system is carried out with carbon dioxide as the working medium. In this paper, two oxygen is used. The thermodynamic modeling and analysis work of the cogeneration energy storage system with carbon as the medium is carried out. The relationship between the system, circulation, components and parameters is discussed from the angle of circulation and actual operation, and the difference and correlation between the thermodynamic characteristics of the thermal energy storage system under the cycle angle and the actual operating angle are compared, which is a thermal energy storage system. In addition, based on the Rankine cycle and Brayton cycle, a variety of new energy storage systems with carbon dioxide as the working medium are proposed, in which the ultra (cross) critical C02 energy storage system based on the Rankine cycle can be the energy source of the wind energy discard at the energy storage stage, and the solar energy guarantee system is used at the same time. The integrated energy storage system based on the Rankine cycle and the electric compression refrigeration cycle can effectively improve the utilization of wind power, and the system has the potential to be applied to the distributed energy supply field. The super (cross) critical C02 energy storage system based on the Brayton cycle avoids the auxiliary heating by using the heat storage technology. In order to achieve higher system efficiency, a new energy storage system with C02 as the working medium provides a new way and a new scheme for the efficient utilization of renewable energy and the development of energy storage technology.
【學(xué)位授予單位】:中國科學(xué)院研究生院(工程熱物理研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM614
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 張新敬;陳海生;劉金超;李文;譚春青;;壓縮空氣儲能技術(shù)研究進(jìn)展[J];儲能科學(xué)與技術(shù);2012年01期
2 金英子,李軍,包鋼,,王祖溫;氣動(dòng)系統(tǒng)充放氣過程中傳熱系數(shù)的測定及其影響[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);1998年01期
相關(guān)博士學(xué)位論文 前1條
1 劉文毅;壓縮空氣蓄能(CAES)電站熱力性能仿真分析[D];華北電力大學(xué)(北京);2008年
相關(guān)碩士學(xué)位論文 前5條
1 陳偉;儲能系統(tǒng)提高風(fēng)力發(fā)電并網(wǎng)系統(tǒng)運(yùn)行穩(wěn)定性的研究[D];華中科技大學(xué);2011年
2 謝石驍;混合儲能系統(tǒng)控制策略與容量配置研究[D];浙江大學(xué);2012年
3 李林磊;具有自定義功能的能源工程系統(tǒng)模塊化仿真研究[D];中國科學(xué)院研究生院(工程熱物理研究所);2012年
4 李文斌;儲能系統(tǒng)平抑風(fēng)電場功率波動(dòng)研究[D];重慶大學(xué);2012年
5 熊倩;含飛輪儲能永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)功率平滑控制策略研究[D];重慶大學(xué);2012年
本文編號:2105527
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2105527.html