基于永磁同步電機(jī)的高精度電液伺服系統(tǒng)設(shè)計(jì)
本文選題:電液伺服系統(tǒng) + 永磁同步電機(jī)矢量控制; 參考:《哈爾濱工業(yè)大學(xué)》2014年碩士論文
【摘要】:電液控制系統(tǒng)作為一種機(jī)電液復(fù)合控制系統(tǒng),具有效率高、帶載能力強(qiáng)、響應(yīng)速度快、功率密度大等優(yōu)點(diǎn),在現(xiàn)代民用領(lǐng)域和軍事領(lǐng)域有廣泛應(yīng)用。本課題研究的基于永磁同步電機(jī)的電液伺服系統(tǒng)通過調(diào)節(jié)伺服電機(jī)的轉(zhuǎn)速來控制定量泵的轉(zhuǎn)速,進(jìn)而實(shí)現(xiàn)精確的速度流量控制和壓力控制。它克服了普通泵控電液系統(tǒng)和閥控電液系統(tǒng)成本高、效率低、維護(hù)困難等不足,,具有成本低、控制精度高、調(diào)速范圍寬、節(jié)能效果好、自動(dòng)化程度高等優(yōu)點(diǎn)。并針對(duì)影響電液伺服系統(tǒng)性能的兩個(gè)主要問題負(fù)載參數(shù)變化和壓力脈動(dòng),提出了新的解決方法,通過實(shí)驗(yàn)驗(yàn)證了方法的有效性。 本文首先介紹了系統(tǒng)的軟硬件整體方案,建立了電液伺服系統(tǒng)平臺(tái)。并針對(duì)永磁同步電機(jī)控制算法進(jìn)行了研究,建立了基于磁場定向矢量控制的永磁同步電機(jī)SVPWM仿真模型,為完成高性能電液伺服系統(tǒng)的速度控制和壓力控制奠定了基礎(chǔ)。 液壓系統(tǒng)具有明顯的非線性特點(diǎn),系統(tǒng)參數(shù)的變化嚴(yán)重影響了系統(tǒng)的壓力控制性能。本課題對(duì)液壓被控系統(tǒng)建模分析,針對(duì)其特點(diǎn)提出了一種參數(shù)辨識(shí)方法,辨識(shí)出表征系統(tǒng)暫穩(wěn)態(tài)性能的主要參數(shù)。并利用辨識(shí)結(jié)果,在PID控制器中對(duì)負(fù)載進(jìn)行補(bǔ)償,將非線性負(fù)載等效為線性負(fù)載,提高系統(tǒng)動(dòng)態(tài)性能和穩(wěn)態(tài)性能。該方法簡單有效且易于實(shí)現(xiàn),有利于工業(yè)生產(chǎn)智能化和自動(dòng)化的實(shí)現(xiàn)。 對(duì)電液伺服系統(tǒng)平臺(tái)主要參數(shù)進(jìn)行測定,針對(duì)電流環(huán)、速度環(huán)和壓力環(huán)分別設(shè)計(jì)調(diào)節(jié)器,通過合理設(shè)計(jì)控制系統(tǒng)使電液伺服系統(tǒng)具有合適的帶寬、較高的穩(wěn)態(tài)精度以及良好的抗擾性能,完成流量控制和壓力控制并達(dá)到良好的暫穩(wěn)態(tài)性能。 此外,電液伺服系統(tǒng)在穩(wěn)壓運(yùn)行時(shí)常常會(huì)產(chǎn)生難以避免和消除的壓力脈動(dòng),影響控制精度和系統(tǒng)穩(wěn)定性。為了解決此問題,本課題采用高頻脈動(dòng)信號(hào)注入的方法來主動(dòng)補(bǔ)償固有壓力脈動(dòng),減小壓力紋波。通過實(shí)驗(yàn)證明了此方法能夠有效減小壓力脈動(dòng),提高系統(tǒng)控制精度,達(dá)到高精度壓力控制的目的。
[Abstract]:As a kind of electrohydraulic compound control system, electro-hydraulic control system has many advantages, such as high efficiency, high load capacity, fast response speed and high power density. It is widely used in modern civil and military fields. The electro-hydraulic servo system based on permanent magnet synchronous motor (PMSM) is studied in this paper, which can control the rotational speed of the pump by adjusting the speed of the servo motor, and then realize the accurate control of velocity, flow and pressure. It overcomes the disadvantages of high cost, low efficiency, difficult maintenance and so on. It has the advantages of low cost, high control precision, wide speed range, good energy-saving effect and high degree of automation. Aiming at the two main problems affecting the performance of electro-hydraulic servo system, the change of load parameters and pressure fluctuation, a new solution is proposed, and the effectiveness of the method is verified by experiments. In this paper, the hardware and software of the system are introduced, and the platform of the electro-hydraulic servo system is established. The SVPWM simulation model of permanent magnet synchronous motor (PMSM) based on flux oriented vector control is established, which lays a foundation for the speed control and pressure control of high performance electro-hydraulic servo system. The hydraulic system has obvious nonlinear characteristics, and the change of system parameters seriously affects the pressure control performance of the system. In this paper, the hydraulic controlled system is modeled and analyzed, and a parameter identification method is proposed to identify the main parameters to characterize the transient performance of the system. Using the identification result, the load is compensated in the pid controller, the nonlinear load is equivalent to the linear load, and the dynamic and steady performance of the system is improved. This method is simple, effective and easy to realize, which is beneficial to the realization of intelligent and automatic industrial production. The main parameters of the electro-hydraulic servo system platform are measured. The regulator is designed for the current loop, the speed loop and the pressure loop, and the control system is designed reasonably to make the electro-hydraulic servo system have suitable bandwidth. High steady-state accuracy and good anti-disturbance performance, flow control and pressure control and achieve good transient performance. In addition, the electro-hydraulic servo system often produces the pressure pulsation which is difficult to avoid and eliminate in the steady voltage operation, which affects the control accuracy and the stability of the system. In order to solve this problem, the high frequency pulsation signal injection method is used to compensate the inherent pressure ripple and reduce the pressure ripple. The experimental results show that this method can effectively reduce the pressure fluctuation, improve the control accuracy of the system and achieve the purpose of high precision pressure control.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李訓(xùn)杰;耿連發(fā);;現(xiàn)代永磁電動(dòng)機(jī)交流伺服系統(tǒng)的發(fā)展和應(yīng)用[J];電機(jī)技術(shù);2009年05期
2 羅衛(wèi)祥;于存貴;;永磁同步電機(jī)伺服系統(tǒng)串級(jí)PID矢量控制研究[J];電氣傳動(dòng);2011年12期
3 闞超;孔祥東;高英杰;何龍;安雅雅;康雙琦;;一種液壓控制辨識(shí)系統(tǒng)的開發(fā)[J];機(jī)床與液壓;2006年08期
4 鄭洪波;孫友松;;直驅(qū)式容積控制電液伺服系統(tǒng)及其發(fā)展現(xiàn)狀[J];機(jī)床與液壓;2011年02期
5 何志勇;何清華;李自光;;結(jié)構(gòu)共振式濾波器試驗(yàn)研究[J];機(jī)床與液壓;2011年05期
6 吳衛(wèi)峰;;液壓脈動(dòng)抑制方法探討[J];機(jī)械工程師;2006年01期
7 何志勇;何清華;李自光;;液壓系統(tǒng)振動(dòng)抑制方法研究[J];煤礦機(jī)械;2010年09期
8 劉蒼山,王科社,李昌琪;液壓脈動(dòng)衰減器的動(dòng)態(tài)品質(zhì)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);1993年02期
9 韓俊偉;;電液伺服系統(tǒng)的發(fā)展與應(yīng)用[J];機(jī)床與液壓;2012年02期
10 陳慶,嚴(yán)金坤;優(yōu)化方法在液壓系統(tǒng)辨識(shí)中的應(yīng)用[J];機(jī)械設(shè)計(jì)與研究;1985年03期
相關(guān)博士學(xué)位論文 前3條
1 張紅娟;變轉(zhuǎn)速泵控差動(dòng)缸及低能耗注塑機(jī)技術(shù)研究[D];太原理工大學(xué);2011年
2 魯文其;永磁同步電機(jī)工程伺服系統(tǒng)若干關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2010年
3 蘇文海;直驅(qū)式電液伺服轉(zhuǎn)葉舵機(jī)關(guān)鍵技術(shù)及其控制系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2009年
本文編號(hào):2075054
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2075054.html