微電網(wǎng)中多逆變器并聯(lián)控制的研究
發(fā)布時間:2018-06-18 23:14
本文選題:微電網(wǎng)逆變器 + 準PR控制器; 參考:《東北大學》2014年碩士論文
【摘要】:目前為止,化石能源的日益匱乏與環(huán)境污染現(xiàn)象形勢較為嚴峻,微電網(wǎng)技術以其獨有的優(yōu)點受到國內(nèi)外學者的廣泛關注。微電網(wǎng)中的分布式發(fā)電單元以逆變器作為功率變換接口為負載提供電能,逆變控制技術是微電網(wǎng)中最為關鍵的技術之一。微電網(wǎng)逆變器大多以并聯(lián)的形式提高系統(tǒng)的容量及可靠性。微電網(wǎng)逆變器在并聯(lián)運行時存在著諸多需要解決的問題,本文主要研究低壓微電網(wǎng)中多逆變器并聯(lián)運行在輸電線路較長時的電壓補償及環(huán)流抑制的問題。首先,本文介紹了微電網(wǎng)提出的背景及研究意義,并闡述微電網(wǎng)逆變器的主要功能,對微電網(wǎng)逆變器進行數(shù)學建模并分析了其常用的輸出波形調(diào)制方法,設計電力濾波器保證輸出電壓質(zhì)量。詳細分析了目前微電網(wǎng)逆變器的控制方法,通過比較分析,選擇準PR控制器作為電壓外環(huán),比例控制器作為電流內(nèi)環(huán)來保證系統(tǒng)的性能。在此基礎上,介紹了并聯(lián)微電網(wǎng)逆變器間主要存在的問題及常用的解決方法。其次,在低壓微電網(wǎng)中,輸電線路以阻性為主,造成了傳統(tǒng)下垂控制方法的局限性,傳統(tǒng)的虛擬阻抗控制方法可以優(yōu)化線路的阻感比,然而,在輸電線路較長時,需要較大的虛擬阻抗才能保證傳統(tǒng)下垂控制方法在微電網(wǎng)中的應用。針對傳統(tǒng)虛擬阻抗的缺點,本文采用了一種改進的虛擬阻抗控制方法,虛擬阻抗的配置不再依賴于線路參數(shù),能夠很好的保證逆變器輸出電壓質(zhì)量。微電網(wǎng)并聯(lián)逆變器應用下垂控制保證逆變器輸出功率均分的同時會造成逆變器輸出電壓頻率及幅值的偏移,而負載一般對頻率較為敏感,對此,本文采用一種分散式調(diào)頻控制方法,保證逆變器輸出頻率為額定值,并且通過MATLAB仿真驗證改進虛擬阻抗方法的正確性。最后,結(jié)合本文對單相逆變系統(tǒng)進行了軟硬件設計。以TMS320F2812DSP為核心搭建實驗平臺,設計軟件流程并在CCS編譯軟件中用C語言編寫軟件程序,得到相關實驗數(shù)據(jù)和波形。
[Abstract]:Up to now, the situation of fossil energy shortage and environmental pollution is more severe. Microgrid technology has been widely concerned by scholars at home and abroad for its unique advantages. The inverter is used as the power conversion interface to provide power for the load in the distributed generation unit in the microgrid. The inverter control technology is one of the most important technologies in the micro-grid. Most microgrid inverters improve the capacity and reliability of the system in parallel. There are many problems that need to be solved in parallel operation of microgrid inverters. This paper mainly studies the voltage compensation and loop suppression of multi-inverter parallel operation in low-voltage microgrid when the transmission line is longer. Firstly, the background and research significance of microgrid inverter are introduced, and the main functions of microgrid inverter are described. The mathematical model of microgrid inverter and its common output waveform modulation method are analyzed. Power filter is designed to guarantee the quality of output voltage. The control methods of microgrid inverter are analyzed in detail. By comparison and analysis, the quasi-PR controller is chosen as the voltage outer loop and the proportional controller as the current inner loop to ensure the performance of the system. On this basis, the main problems and common solutions between parallel microgrid inverters are introduced. Secondly, in the low-voltage microgrid, the transmission line is mainly resistive, which results in the limitation of the traditional droop control method. The traditional virtual impedance control method can optimize the resistance / sense ratio of the transmission line, however, when the transmission line is longer, the resistance / sense ratio of the transmission line can be optimized by the traditional virtual impedance control method. Large virtual impedance is needed to ensure the application of traditional droop control method in microgrid. Aiming at the shortcoming of traditional virtual impedance, an improved virtual impedance control method is adopted in this paper. The configuration of virtual impedance is no longer dependent on line parameters, which can guarantee the output voltage quality of inverter. The application of droop control in microgrid parallel inverter ensures that the output power of the inverter is equally divided and the output voltage frequency and amplitude of the inverter are offset, but the load is generally sensitive to the frequency. In this paper, a decentralized frequency modulation control method is used to ensure that the output frequency of the inverter is rated, and the correctness of the improved virtual impedance method is verified by MATLAB simulation. Finally, the hardware and software of the single-phase inverter system are designed. The experimental platform is built with TMS320F2812 DSP as the core, the software flow is designed and the software program is written in C language in the CCS compiling software, and the related experimental data and waveform are obtained.
【學位授予單位】:東北大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM464
【相似文獻】
相關期刊論文 前10條
1 鄭漳華;艾芊;;微電網(wǎng)的研究現(xiàn)狀及在我國的應用前景[J];電網(wǎng)技術;2008年16期
2 麻敏;韓繼明;麻秀慧;陳衍妍;;淺談微電網(wǎng)[J];科技資訊;2009年15期
3 樓書氫;李青鋒;許化強;劉魯?shù)?;國外微電網(wǎng)的研究概況及其在我國的應用前景[J];華中電力;2009年03期
4 楊為;丁明;畢銳;高研;丁銀;;微電網(wǎng)實驗平臺的設計[J];合肥工業(yè)大學學報(自然科學版);2010年01期
5 袁清芳;周作春;陳艷霞;李香龍;陳國鋒;;微電網(wǎng)發(fā)展應對策略[J];農(nóng)村電氣化;2010年10期
6 安智敏;羅時光;;微電網(wǎng)的概念及發(fā)展[J];內(nèi)蒙古石油化工;2011年21期
7 王t,
本文編號:2037209
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/2037209.html