天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電力論文 >

基于新息圖理論的含分布式電源配電網(wǎng)三相狀態(tài)估計(jì)研究

發(fā)布時(shí)間:2018-06-07 07:05

  本文選題:配電網(wǎng)狀態(tài)估計(jì) + 新息圖; 參考:《哈爾濱工業(yè)大學(xué)》2014年碩士論文


【摘要】:配電網(wǎng)狀態(tài)估計(jì)是獲得配電系統(tǒng)準(zhǔn)確實(shí)時(shí)狀態(tài)信息的重要手段,是配電網(wǎng)運(yùn)行控制的基礎(chǔ)。本文針對(duì)波動(dòng)性分布式電源并網(wǎng)后的配電網(wǎng)狀態(tài)估計(jì)問(wèn)題展開(kāi)研究,以新息圖理論為基礎(chǔ),建立含分布式電源配電網(wǎng)的新息圖模型,對(duì)一系列不正常事件進(jìn)行辨識(shí)。 針對(duì)接入波動(dòng)性分布式電源后,節(jié)點(diǎn)注入不正常事件發(fā)生頻繁,輻射狀配電網(wǎng)近根部支路因受新息誤差累加的影響,而導(dǎo)致不正常事件誤判或者湮沒(méi)的問(wèn)題,通過(guò)分析誤差形成的原因,提出了計(jì)及網(wǎng)損和分布式電源輸出功率的計(jì)算新息矢量,用當(dāng)前時(shí)刻的節(jié)點(diǎn)注入測(cè)量與節(jié)點(diǎn)注入預(yù)報(bào)分別回推計(jì)算各支路潮流,將得到的兩潮流作差,形成計(jì)算新息矢量,并代替原有的連支推算新息矢量,同時(shí)對(duì)分布式電源進(jìn)行簡(jiǎn)化處理,建立含分布式電源配電網(wǎng)的新息圖模型。通過(guò)蒙特卡洛模擬的方法對(duì)兩種新息圖模型的誤差進(jìn)行了比較,結(jié)果表明計(jì)算新息矢量在新息圖計(jì)算中能夠極大降低新息誤差,提高了新息圖在配電網(wǎng)中辨識(shí)不正常事件的精確度。 與輸電網(wǎng)的新息圖建模不同,配電網(wǎng)新息圖計(jì)算中必須用到節(jié)點(diǎn)注入測(cè)量,會(huì)出現(xiàn)節(jié)點(diǎn)注入測(cè)量誤差較大的壞數(shù)據(jù)和預(yù)報(bào)誤差較大的負(fù)荷突變發(fā)生在同一位置的情況,配電網(wǎng)中接入間歇式、波動(dòng)性分布式電源后,受兩種誤差交疊影響的情況進(jìn)一步加重。針對(duì)節(jié)點(diǎn)注入測(cè)量壞數(shù)據(jù)與負(fù)荷突變交疊、多相關(guān)測(cè)量壞數(shù)據(jù)與負(fù)荷突變交疊這兩類問(wèn)題,基于含分布式電源配電網(wǎng)新息圖模型,提出在新息差中將測(cè)量壞數(shù)據(jù)與負(fù)荷突變分離,先辨識(shí)測(cè)量壞數(shù)據(jù)后辨識(shí)負(fù)荷突變的分類辨識(shí)方法。33母線測(cè)試系統(tǒng)算例表明,所提出的方法能準(zhǔn)確辨識(shí)接入分布式電源后節(jié)點(diǎn)注入測(cè)量壞數(shù)據(jù)與負(fù)荷突變交疊、多相關(guān)測(cè)量壞數(shù)據(jù)與負(fù)荷突變交疊的情況。 配電網(wǎng)正由傳統(tǒng)的嚴(yán)格輻射狀向弱環(huán)狀發(fā)展,弱環(huán)聯(lián)絡(luò)開(kāi)關(guān)狀態(tài)的改變引起拓?fù)浣Y(jié)構(gòu)的變化,針對(duì)含分布式電源配電系統(tǒng)中弱環(huán)合環(huán)但未報(bào)告的拓?fù)溴e(cuò)誤,在解環(huán)模型下通過(guò)新息圖理論將弱環(huán)的辨識(shí)轉(zhuǎn)化為弱環(huán)合環(huán)潮流等效節(jié)點(diǎn)注入位置的辨識(shí);單電源輻射狀配電網(wǎng)結(jié)構(gòu)最簡(jiǎn)單但不利于提高供電可靠性,廣泛存在的是由常分聯(lián)絡(luò)開(kāi)關(guān)連接的多電源環(huán)網(wǎng),在這類結(jié)構(gòu)的配電網(wǎng)中因線路故障或者檢修經(jīng)常進(jìn)行負(fù)荷轉(zhuǎn)移,改變了拓?fù)浣Y(jié)構(gòu),通過(guò)新息圖理論辨識(shí)轉(zhuǎn)移負(fù)荷的方向以及負(fù)荷的大小,來(lái)辨識(shí)負(fù)荷轉(zhuǎn)移引起的拓?fù)溴e(cuò)誤。通過(guò)33母線測(cè)試系統(tǒng)驗(yàn)證了所提出辨識(shí)拓?fù)溴e(cuò)誤方法的有效性。 本文研究工作依托于國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)重大項(xiàng)目《高滲透率間歇性能源的區(qū)域電網(wǎng)關(guān)鍵技術(shù)研究和示范》(2011AA05A105)以及國(guó)家自然科學(xué)基金項(xiàng)目《電網(wǎng)參數(shù)分檢式估計(jì)方法研究》(50977017)。
[Abstract]:Distribution network state estimation is an important means to obtain accurate real-time state information of distribution system and is the basis of distribution network operation control. In this paper, based on the theory of innovation graph, the innovation graph model of distributed power distribution network is established, and a series of abnormal events are identified. After accessing the fluctuating distributed power supply, the abnormal events of node injection occur frequently, and the near root branch of the radial distribution network is affected by the accumulation of innovation error, which leads to the misjudgment or annihilation of the abnormal events. By analyzing the causes of the error formation, the computational innovation vector considering the network loss and the output power of the distributed power source is proposed. The node injection measurement and node injection prediction at the current time are used to calculate the branch power flow, respectively. The calculated innovation vector is formed by the difference of the two currents, and the new information vector is calculated instead of the original connected support. At the same time, the distributed power supply is simplified and the innovation graph model of the distribution network with distributed power is established. The errors of the two models are compared by Monte Carlo simulation. The results show that the computational innovation vector can greatly reduce the error of innovation in the calculation of innovation graph. The accuracy of the innovation graph in identifying abnormal events in distribution network is improved. Different from the modeling of innovation graph of transmission network, nodal injection measurement must be used in the calculation of innovation graph of distribution network, and the bad data with big error of node injection measurement and the sudden change of load with large prediction error will occur in the same position. After the intermittent and fluctuating distributed generation is connected in the distribution network, the influence of the overlap of the two kinds of errors is further aggravated. Aiming at the two kinds of problems such as node injection measurement bad data and load mutation overlap, multi-correlation measurement bad data and load sudden change overlap, this paper based on the innovation graph model of distribution network with distributed generation. In this paper, a new method of classification and identification of bad data and load mutation is proposed, which separates the bad data from the load mutation in the new interest rate difference. The example of the busbar test system .33 shows that the method can be used to detect the bad data and then identify the load mutation. The proposed method can accurately identify the overlap of node injection measurement bad data and load mutation after access to distributed power supply, and the overlap of multi-correlation measurement bad data and load abrupt change. The distribution network is developing from the traditional strict radiation to the weak ring. The change of the state of the weak ring connection leads to the change of the topology structure. The topology error of the weak ring closed ring in the distributed power distribution system is not reported. Based on the theory of innovation graph, the weak ring identification is transformed into the identification of the equivalent node injection position of the weak loop, the single source radial distribution network has the simplest structure but is not conducive to improving the reliability of power supply. What exists widely is the multi-power loop network connected by the constant branch contact switch. In the distribution network of this kind of structure, the load transfer is often carried out because of the line fault or maintenance, which changes the topological structure. The topological errors caused by load transfer are identified by using innovation graph theory to identify the direction and magnitude of load transfer. The validity of the proposed method is verified by 33 busbar test system. The research work in this paper is based on the national high technology research and development plan "the national high-tech research and development plan") the major project "regional power grid key technology research and demonstration of high permeability intermittent energy" (2011AA05A105) and the national natural science foundation project < grid parameters A study on the estimation method of the Partition of Inspection.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM73

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳桂琴,宋順成;等維新息模型預(yù)測(cè)國(guó)外裝甲及反裝甲武器發(fā)展[J];兵器材料科學(xué)與工程;2005年04期

2 周蘇荃,柳焯;新息圖的智能特征[J];電力系統(tǒng)自動(dòng)化;2000年13期

3 姚洪利,高效,田科鈺;基于衰減記憶n次新息的目標(biāo)機(jī)動(dòng)檢測(cè)和排飛點(diǎn)[J];情報(bào)指揮控制系統(tǒng)與仿真技術(shù);2004年05期

4 周蘇荃,李昌,柳焯;利用回路新息相角差代數(shù)和識(shí)別拓?fù)浣Y(jié)構(gòu)變化[J];電力自動(dòng)化設(shè)備;2002年06期

5 潘國(guó)榮,王穗輝;引入時(shí)變遞增因子的加權(quán)等維新息模型及預(yù)測(cè)[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年06期

6 王福海;能源產(chǎn)量的等維新息模型及應(yīng)用[J];能源研究與利用;1994年05期

7 朱志芳;丁鋒;;自回歸模型的多新息投影辨識(shí)方法[J];科學(xué)技術(shù)與工程;2009年14期

8 毛志強(qiáng);蔡中勤;周蘇荃;李碧君;李雷;龔成明;;基于新息圖法的電力系統(tǒng)負(fù)荷突變辨識(shí)[J];電力系統(tǒng)自動(dòng)化;2011年12期

9 于麗;丁鋒;張佳波;;多新息隨機(jī)梯度辨識(shí)方法的收斂性研究[J];科學(xué)技術(shù)與工程;2007年21期

10 魯文,徐石明,周蘇荃,柳焯;新息圖法輻射配電網(wǎng)不正常事件的識(shí)別[J];華北電力技術(shù);2004年04期

相關(guān)會(huì)議論文 前3條

1 聶曉華;;基于新息偏差多模型機(jī)動(dòng)目標(biāo)跟蹤算法[A];中國(guó)造船工程學(xué)會(huì)電子技術(shù)學(xué)術(shù)委員會(huì)2006學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2006年

2 王惠娟;;新息數(shù)據(jù)對(duì)GM(1,1)模型的影響分析及應(yīng)用[A];第25屆全國(guó)灰色系統(tǒng)會(huì)議論文集[C];2014年

3 盧曉;張煥水;王偉;;時(shí)滯線性系統(tǒng)最優(yōu)濾波方法[A];第二十三屆中國(guó)控制會(huì)議論文集(上冊(cè))[C];2004年

相關(guān)博士學(xué)位論文 前2條

1 張直;無(wú)線傳感器網(wǎng)絡(luò)中基于量化新息的狀態(tài)估計(jì)研究[D];上海交通大學(xué);2015年

2 張艷軍;新息圖狀態(tài)估計(jì)應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 王世龍;基于有限新息率采樣的醫(yī)學(xué)信號(hào)恢復(fù)算法研究[D];哈爾濱工業(yè)大學(xué);2016年

2 倫小翔;交直流電網(wǎng)新息圖狀態(tài)估計(jì)方法研究[D];哈爾濱工業(yè)大學(xué);2016年

3 孫在濤;基于新息圖理論的含分布式電源配電網(wǎng)三相狀態(tài)估計(jì)研究[D];哈爾濱工業(yè)大學(xué);2014年

4 岳軍;帶未知參數(shù)系統(tǒng)的多傳感器多新息卡爾曼濾波器[D];黑龍江大學(xué);2015年

5 徐艷;基于新息圖法的電力系統(tǒng)參數(shù)估計(jì)的研究[D];哈爾濱工業(yè)大學(xué);2008年

6 王志廣;方程誤差模型基于最新估計(jì)的多新息隨機(jī)梯度辨識(shí)[D];哈爾濱工業(yè)大學(xué);2015年

7 程文玉;新息圖法狀態(tài)估計(jì)與模式識(shí)別技術(shù)的結(jié)合應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2013年

8 常亮;基于加權(quán)多新息方法的系統(tǒng)辨識(shí)[D];哈爾濱工業(yè)大學(xué);2010年

9 張佳波;基于多新息參數(shù)估計(jì)的隨機(jī)梯度自校正控制方法[D];江南大學(xué);2008年

10 馬春陽(yáng);基于新息圖的配電網(wǎng)三相狀態(tài)估計(jì)[D];哈爾濱工業(yè)大學(xué);2012年



本文編號(hào):1990304

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1990304.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b2cea***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com